Analysis of missense variants in the PKHD1-gene in patients with autosomal recessive polycystic kidney disease (ARPKD)

Monique Losekoot, Cathleen Haarloo, Claudia Ruivenkamp, Stefan John White, Martijn Breuning, Dorien Peters

Research output: Contribution to journalArticleResearchpeer-review

37 Citations (Scopus)

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is a severe form of polycystic kidney disease characterized by enlarged kidneys and congenital hepatic fibrosis. Given the poor prognosis for the majority of children with the severe perinatal ARPKD phenotype, there is a regular request for prenatal testing. ARPKD is caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which consists of 86 exons that are variably assembled into a number of alternatively spliced transcripts. The longest transcript, comprising 67 exons, encodes the protein fibrocystin/polyductin. We have set up mutation analysis by direct sequencing of these 67 exons. In 39 mainly Dutch families we identified: 11 nonsense mutations, 15 deletions/insertions, 5 splice site mutations, and 39 missense mutations. To classify missense variants we combined evolutionary conservation, using the human, chimpanzee, dog, mouse, chicken and frog Pkhd1 sequences, with the Grantham score for chemical differences. Thirty-three missense mutations were considered pathogenic and seven were classified as rare, probably pathogenic variants. In addition to sequence analysis, multiplex ligation-dependent probe amplification (MLPA) was used to identify multiple exon deletions. However, no large deletions in the PKHD1 gene were identified. In 31 index patients two mutations were found, in 6 patients one mutation was found, leading to a mutation detection rate of 87 . The analysis of amino acid conservation as well as applying the Grantham score for chemical differences allowed us to determine the pathogeneity for nearly all new missense mutations and thus proved to be useful tools to classify missense variants.
Original languageEnglish
Pages (from-to)185 - 206
Number of pages22
JournalHuman Genetics
Volume118
Issue number2
DOIs
Publication statusPublished - 2005
Externally publishedYes

Cite this