An uncommon (5,5)-connected 3D metal organic material for selective and sensitive sensing of nitroaromatics and ferric ion: Experimental studies and theoretical analysis

Jun Wang, Xi Ren Wu, Jian Qiang Liu, Bao-Hong Li, Amita Singh, Abhinav Kumar, Stuart R. Batten

Research output: Contribution to journalArticleResearchpeer-review

62 Citations (Scopus)


An unexploited pentacarboxylate ligand, 2,5-bis(3′,5′-dicarboxylphenyl)-benzoic acid (H5L), was designed and used for the preparation of metal organic material using Zn2+ as a node. The new compound, {(Me2NH2)[Zn2(L)(H2O)]·0.5DMF}n (1) (DMF = dimethylformamide), has been synthesized and structurally characterized. The topology of the 5-connected anionic framework may be described as (44)(66) (Schläfli symbol) based on {M2(CO2)5} molecular building blocks (MBBs) and L ligands in 1. It has been demonstrated that 1 can act as a fluorescent sensor for highly sensitive detection of nitroaromatics and Fe3+, with a detection limit of 0.54 ppm for 2,4,6-trinitrophenol (TNP) and 0.81 ppm for Fe3+. The possible emission quenching mechanism in the presence of nitroaromatics has been addressed by theoretical calculations.

Original languageEnglish
Pages (from-to)3519-3525
Number of pages7
Issue number25
Publication statusPublished - 2017

Cite this