TY - JOUR
T1 - An efficient single phase method for the extraction of plasma lipids
AU - Alshehry, Zahir H.
AU - Barlow, Christopher K.
AU - Weir, Jacquelyn M.
AU - Zhou, Youping
AU - McConville, Malcolm J.
AU - Meikle, Peter J.
PY - 2015/6/17
Y1 - 2015/6/17
N2 - Lipidomic approaches are now widely used to investigate the relationship between lipid metabolism, health and disease. Large-scale lipidomics studies typically aim to quantify hundreds to thousands of lipid molecular species in a large number of samples. Consequently, high throughput methodology that can efficiently extract a wide range of lipids from biological samples is required. Current methods often rely on extraction in chloroform:methanol with or without two phase partitioning or other solvents, which are often incompatible with liquid chromatography electrospray ionization-tandem mass spectrometry (LC ESI-MS/MS). Here, we present a fast, simple extraction method that is suitable for high throughput LC ESI-MS/MS. Plasma (10 μL) was mixed with 100 μL 1-butanol:methanol (1:1 v/v) containing internal standards resulting in efficient extraction of all major lipid classes (including sterols, glycerolipids, glycerophospholipids and sphingolipids). Lipids were quantified using positive-ion mode LC ESI-MS/MS. The method showed high recovery (>90%) and reproducibility (%CV < 20%). It showed a strong correlation of all lipid measures with an established chloroform:methanol extraction method (R2 = 0.976). This method uses non-halogenated solvents, requires no drying or reconstitution steps and is suitable for large-scale LC ESI-MS/MS-based lipidomic analyses in research and clinical laboratories.
AB - Lipidomic approaches are now widely used to investigate the relationship between lipid metabolism, health and disease. Large-scale lipidomics studies typically aim to quantify hundreds to thousands of lipid molecular species in a large number of samples. Consequently, high throughput methodology that can efficiently extract a wide range of lipids from biological samples is required. Current methods often rely on extraction in chloroform:methanol with or without two phase partitioning or other solvents, which are often incompatible with liquid chromatography electrospray ionization-tandem mass spectrometry (LC ESI-MS/MS). Here, we present a fast, simple extraction method that is suitable for high throughput LC ESI-MS/MS. Plasma (10 μL) was mixed with 100 μL 1-butanol:methanol (1:1 v/v) containing internal standards resulting in efficient extraction of all major lipid classes (including sterols, glycerolipids, glycerophospholipids and sphingolipids). Lipids were quantified using positive-ion mode LC ESI-MS/MS. The method showed high recovery (>90%) and reproducibility (%CV < 20%). It showed a strong correlation of all lipid measures with an established chloroform:methanol extraction method (R2 = 0.976). This method uses non-halogenated solvents, requires no drying or reconstitution steps and is suitable for large-scale LC ESI-MS/MS-based lipidomic analyses in research and clinical laboratories.
KW - 1-butanol/methanol extraction
KW - Lipidomics
KW - Mass spectrometry
UR - http://www.scopus.com/inward/record.url?scp=85016912323&partnerID=8YFLogxK
U2 - 10.3390/metabo5020389
DO - 10.3390/metabo5020389
M3 - Article
C2 - 26090945
AN - SCOPUS:85016912323
SN - 2218-1989
VL - 5
SP - 389
EP - 403
JO - Metabolites
JF - Metabolites
IS - 2
ER -