Abstract
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from -10-8 to 10-9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10-25 at 95% confidence level. The minimum upper limit of 1.10×10-25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.
Original language | English |
---|---|
Article number | 102008 |
Number of pages | 37 |
Journal | Physical Review D |
Volume | 106 |
Issue number | 10 |
DOIs | |
Publication status | Published - 15 Nov 2022 |
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review D, Vol. 106, No. 10, 102008, 15.11.2022.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data
AU - Abbott, R.
AU - Abe, H.
AU - Acernese, F.
AU - Ackley, K.
AU - Adhikari, N.
AU - Adhikari, R. X.
AU - Adkins, V. K.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agarwal, D.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Akutsu, T.
AU - Albanesi, S.
AU - Alfaidi, R. A.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, C.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Ando, M.
AU - Andrade, T.
AU - Andres, N.
AU - Andrés-Carcasona, M.
AU - Andrić, T.
AU - Angelova, S. V.
AU - Ansoldi, S.
AU - Antelis, J. M.
AU - Antier, S.
AU - Apostolatos, T.
AU - Appavuravther, E. Z.
AU - Appert, S.
AU - Apple, S. K.
AU - Arai, K.
AU - Araya, A.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Aritomi, N.
AU - Arnaud, N.
AU - Arogeti, M.
AU - Aronson, S. M.
AU - Asada, H.
AU - Asali, Y.
AU - Ashton, G.
AU - Aso, Y.
AU - Assiduo, M.
AU - Assis De Souza Melo, S.
AU - Aston, S. M.
AU - Astone, P.
AU - Aubin, F.
AU - Aultoneal, K.
AU - Austin, C.
AU - Babak, S.
AU - Badaracco, F.
AU - Bader, M. K.M.
AU - Badger, C.
AU - Bae, S.
AU - Bae, Y.
AU - Baer, A. M.
AU - Bagnasco, S.
AU - Bai, Y.
AU - Baird, J.
AU - Bajpai, R.
AU - Baka, T.
AU - Ball, M.
AU - Ballardin, G.
AU - Ballmer, S. W.
AU - Balsamo, A.
AU - Baltus, G.
AU - Banagiri, S.
AU - Banerjee, B.
AU - Bankar, D.
AU - Barayoga, J. C.
AU - Barbieri, C.
AU - Barish, B. C.
AU - Barker, D.
AU - Barneo, P.
AU - Barone, F.
AU - Barr, B.
AU - Barsotti, L.
AU - Barsuglia, M.
AU - Barta, D.
AU - Bartlett, J.
AU - Barton, M. A.
AU - Bartos, I.
AU - Basak, S.
AU - Bassiri, R.
AU - Basti, A.
AU - Bawaj, M.
AU - Bayley, J. C.
AU - Bazzan, M.
AU - Becher, B. R.
AU - Bécsy, B.
AU - Bedakihale, V. M.
AU - Beirnaert, F.
AU - Bejger, M.
AU - Belahcene, I.
AU - Benedetto, V.
AU - Beniwal, D.
AU - Benjamin, M. G.
AU - Bennett, T. F.
AU - Bentley, J. D.
AU - Benyaala, M.
AU - Bera, S.
AU - Berbel, M.
AU - Bergamin, F.
AU - Berger, B. K.
AU - Bernuzzi, S.
AU - Bersanetti, D.
AU - Bertolini, A.
AU - Betzwieser, J.
AU - Beveridge, D.
AU - Bhandare, R.
AU - Bhandari, A. V.
AU - Bhardwaj, U.
AU - Bhatt, R.
AU - Bhattacharjee, D.
AU - Bhaumik, S.
AU - Bianchi, A.
AU - Bilenko, I. A.
AU - Billingsley, G.
AU - Bini, S.
AU - Birney, R.
AU - Birnholtz, O.
AU - Biscans, S.
AU - Bischi, M.
AU - Biscoveanu, S.
AU - Bisht, A.
AU - Biswas, B.
AU - Bitossi, M.
AU - Bizouard, M. A.
AU - Blackburn, J. K.
AU - Blair, C. D.
AU - Blair, D. G.
AU - Blair, R. M.
AU - Bobba, F.
AU - Bode, N.
AU - Boër, M.
AU - Bogaert, G.
AU - Boldrini, M.
AU - Bolingbroke, G. N.
AU - Bonavena, L. D.
AU - Bondu, F.
AU - Bonilla, E.
AU - Bonnand, R.
AU - Booker, P.
AU - Boom, B. A.
AU - Bork, R.
AU - Boschi, V.
AU - Bose, N.
AU - Bose, S.
AU - Bossilkov, V.
AU - Boudart, V.
AU - Bouffanais, Y.
AU - Bozzi, A.
AU - Bradaschia, C.
AU - Brady, P. R.
AU - Bramley, A.
AU - Branch, A.
AU - Branchesi, M.
AU - Brau, J. E.
AU - Breschi, M.
AU - Briant, T.
AU - Briggs, J. H.
AU - Brillet, A.
AU - Brinkmann, M.
AU - Brockill, P.
AU - Brooks, A. F.
AU - Brooks, J.
AU - Brown, D. D.
AU - Brunett, S.
AU - Bruno, G.
AU - Bruntz, R.
AU - Bryant, J.
AU - Bucci, F.
AU - Bulik, T.
AU - Bulten, H. J.
AU - Buonanno, A.
AU - Burtnyk, K.
AU - Buscicchio, R.
AU - Buskulic, D.
AU - Buy, C.
AU - Byer, R. L.
AU - Cabourn Davies, G. S.
AU - Cabras, G.
AU - Cabrita, R.
AU - Cadonati, L.
AU - Caesar, M.
AU - Cagnoli, G.
AU - Cahillane, C.
AU - Calderón Bustillo, J.
AU - Callaghan, J. D.
AU - Callister, T. A.
AU - Calloni, E.
AU - Cameron, J.
AU - Camp, J. B.
AU - Canepa, M.
AU - Canevarolo, S.
AU - Cannavacciuolo, M.
AU - Cannon, K. C.
AU - Cao, H.
AU - Cao, Z.
AU - Capocasa, E.
AU - Capote, E.
AU - Carapella, G.
AU - Carbognani, F.
AU - Carlassara, M.
AU - Carlin, J. B.
AU - Carney, M. F.
AU - Carpinelli, M.
AU - Carrillo, G.
AU - Carullo, G.
AU - Carver, T. L.
AU - Casanueva Diaz, J.
AU - Casentini, C.
AU - Castaldi, G.
AU - Caudill, S.
AU - Cavaglià, M.
AU - Cavalier, F.
AU - Cavalieri, R.
AU - Cella, G.
AU - Cerdá-Durán, P.
AU - Cesarini, E.
AU - Chaibi, W.
AU - Chalathadka Subrahmanya, S.
AU - Easter, P. J.
AU - Galaudage, S.
AU - Goncharov, B.
AU - Hernandez Vivanco, F.
AU - Hübner, M. T.
AU - Lasky, P. D.
AU - Levin, Y.
AU - Lin, F. K.
AU - Payne, E.
AU - Romero-Shaw, I. M.
AU - Sarin, N.
AU - Smith, R. J.E.
AU - Talbot, C.
AU - Thrane, E.
AU - Vajpeyi, A.
AU - Zhu, X. J.
AU - The LIGO Scientific Collaboration
AU - Virgo Collaboration
AU - the KAGRA Collaboration
N1 - Funding Information: This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana, and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union—European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, CNRS, and PL-Grid for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastructure Project of KISTI-GSDC, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK. Publisher Copyright: © 2022 us.
PY - 2022/11/15
Y1 - 2022/11/15
N2 - We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from -10-8 to 10-9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10-25 at 95% confidence level. The minimum upper limit of 1.10×10-25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.
AB - We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from -10-8 to 10-9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10-25 at 95% confidence level. The minimum upper limit of 1.10×10-25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.
UR - http://www.scopus.com/inward/record.url?scp=85144215323&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.106.102008
DO - 10.1103/PhysRevD.106.102008
M3 - Article
AN - SCOPUS:85144215323
SN - 2470-0010
VL - 106
JO - Physical Review D
JF - Physical Review D
IS - 10
M1 - 102008
ER -