Abstract
Passive co-treatment of high-strength acid mine drainage (AMD) and municipal wastewater (MWW) was examined in a laboratory-scale, four-stage continuous flow reactor system with a total residence time of 6.6 d. Synthetic AMD of pH 2.60 and an acidity of 1,870 mg/L (as CaCO3) was mixed at a 1:2 ratio with raw MWW (pH 7.67, 288 mg/L alkalinity (as CaCO3), and 265 mg/L BOD5) from the City of Norman, Oklahoma and introduced into the system. Alkalinity generated by limestone dissolution and bacterial SO4 2- reduction (BSR) processes was sufficient to support various metal removal processes and produce an effluent with circumneutral pH (6.98) and a net alkalinity of 10.4 mg/L (as CaCO3). Alkalinity generation from limestone dissolution was comparable with conventional AMD passive treatment systems. BSR proceeded at a relatively high rate (0. 56 mol/m3 day) despite inhibitory pH and metals concentrations. Results indicate that the diverse electron donors in the MWW may be as suitable for BSR and their supporting microbial communities as commonly used substrates, presenting an opportunity to use a common waste as a resource for passive treatment.
Original language | English |
---|---|
Pages (from-to) | 47-53 |
Number of pages | 7 |
Journal | Mine Water and the Environment |
Volume | 30 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2011 |
Externally published | Yes |
Keywords
- Andes
- Bicarbonate Alkalinity
- Bolivia
- Calcite
- Sewage