TY - JOUR
T1 - Alcohol exposure during late ovine gestation alters fetal liver iron homeostasis without apparent dysmorphology
AU - Sozo, Foula
AU - Dick, Anna M
AU - Bensley, Jonathan Guy Ablett
AU - Kenna, Kelly Rebecca
AU - Brien, James F
AU - Harding, Richard
AU - De Matteo, Robert Mark
PY - 2013
Y1 - 2013
N2 - High levels of alcohol (ethanol) exposure during fetal life can affect liver development and can increase susceptibility to infection after birth. Our aim was to determine the effects of a moderate level of ethanol exposure in late gestation on the morphology, iron status, and inflammatory status of the ovine fetal liver. Pregnant ewes were chronically catheterized at 91 days of gestation (DG; term approximately 145 DG) for daily intravenous infusion of ethanol (0.75 g/kg maternal body wt; n = 8) or saline (n = 7) over 1 h from 95 to 133 DG. At necropsy (134 DG), fetal livers were collected for analysis. Liver weight, general liver morphology, hepatic cell proliferation and apoptosis, perivascular collagen deposition, and interleukin (IL)-1beta, IL-6, or IL-8 mRNA levels were not different between groups. However, ethanol exposure led to significant decreases in hepatic content of ferric iron and gene expression of the iron-regulating hormone hepcidin and tumor necrosis factor (TNF)-alpha (all P <0.05). In the placenta, there was no difference in transferrin receptor, divalent metal transporter 1, and ferritin mRNA levels; however, ferroportin mRNA levels were increased in ethanol-exposed animals (P <0.05), and ferroportin protein tended to be increased (P = 0.054). Plasma iron concentration was not different between control and ethanol-exposed groups; control fetuses had significantly higher iron concentrations than their mothers, whereas maternal and fetal iron concentrations were similar in ethanol-exposed animals. We conclude that daily ethanol exposure during the third-trimester-equivalent in sheep does not alter fetal liver morphology; however, decreased fetal liver ferric iron content and altered hepcidin and ferroportin gene expression indicate that iron homeostasis is altered.
AB - High levels of alcohol (ethanol) exposure during fetal life can affect liver development and can increase susceptibility to infection after birth. Our aim was to determine the effects of a moderate level of ethanol exposure in late gestation on the morphology, iron status, and inflammatory status of the ovine fetal liver. Pregnant ewes were chronically catheterized at 91 days of gestation (DG; term approximately 145 DG) for daily intravenous infusion of ethanol (0.75 g/kg maternal body wt; n = 8) or saline (n = 7) over 1 h from 95 to 133 DG. At necropsy (134 DG), fetal livers were collected for analysis. Liver weight, general liver morphology, hepatic cell proliferation and apoptosis, perivascular collagen deposition, and interleukin (IL)-1beta, IL-6, or IL-8 mRNA levels were not different between groups. However, ethanol exposure led to significant decreases in hepatic content of ferric iron and gene expression of the iron-regulating hormone hepcidin and tumor necrosis factor (TNF)-alpha (all P <0.05). In the placenta, there was no difference in transferrin receptor, divalent metal transporter 1, and ferritin mRNA levels; however, ferroportin mRNA levels were increased in ethanol-exposed animals (P <0.05), and ferroportin protein tended to be increased (P = 0.054). Plasma iron concentration was not different between control and ethanol-exposed groups; control fetuses had significantly higher iron concentrations than their mothers, whereas maternal and fetal iron concentrations were similar in ethanol-exposed animals. We conclude that daily ethanol exposure during the third-trimester-equivalent in sheep does not alter fetal liver morphology; however, decreased fetal liver ferric iron content and altered hepcidin and ferroportin gene expression indicate that iron homeostasis is altered.
UR - http://ajpregu.physiology.org/content/ajpregu/304/12/R1121.full.pdf
U2 - 10.1152/ajpregu.00479.2012
DO - 10.1152/ajpregu.00479.2012
M3 - Article
VL - 304
SP - 1121
EP - 1129
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
SN - 0363-6119
IS - 12
ER -