Age-dependent changes in the proteome following complete spinal cord transection in a postnatal South American Opossum (Monodelphis domestica)

Natassya M Noor, David L Steer, Benjamin J Wheaton, C Joakim Ek, Jessie S Truettner, W Dalton Dietrich, Katarzyna M Dziegielewska, Samantha J Richardson, Alexander Ian Smith, John L VandeBerg, Norman R Saunders

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Recovery from severe spinal injury in adults is limited, compared to immature animals who demonstrate some capacity for repair. Using laboratory opossums (Monodelphis domestica), the aim was to compare proteomic responses to injury at two ages: one when there is axonal growth across the lesion and substantial behavioural recovery and one when no axonal growth occurs. Anaesthetized pups at postnatal day (P) 7 or P28 were subjected to complete transection of the spinal cord at thoracic level T10. Cords were collected 1 or 7 days after injury and from age-matched controls. Proteins were separated based on isoelectric point and subunit molecular weight; those whose expression levels changed following injury were identified by densitometry and analysed by mass spectrometry. Fifty-six unique proteins were identified as differentially regulated in response to spinal transection at both ages combined. More than 50 were cytoplasmic and 70 belonged to families of proteins with characteristic binding properties. Proteins were assigned to groups by biological function including regulation (40 ), metabolism (26 ), inflammation (19 ) and structure (15 ). More changes were detected at one than seven days after injury at both ages. Seven identified proteins: 14-3-3 epsilon, 14-3-3 gamma, cofilin, alpha enolase, heart fatty acid binding protein (FABP3), brain fatty acid binding protein (FABP7) and ubiquitin demonstrated age-related differential expression and were analysed by qRT-PCR. Changes in mRNA levels for FABP3 at P7+1day and ubiquitin at P28+1day were statistically significant. Immunocytochemical staining showed differences in ubiquitin localization in younger compared to older cords and an increase in oligodendrocyte and neuroglia immunostaining following injury at P28. Western blot analysis supported proteomic results for ubiquitin and 14-3-3 proteins. Data obtained at the two ages demonstrated changes in response to injury, compared to controls, that were different for different functional protein classes. Some may provide targets for novel drug or gene therapies.
Original languageEnglish
Article numbere27465
Number of pages16
JournalPLoS ONE
Volume6
Issue number11
DOIs
Publication statusPublished - 2011

Cite this

Noor, N. M., Steer, D. L., Wheaton, B. J., Ek, C. J., Truettner, J. S., Dietrich, W. D., ... Saunders, N. R. (2011). Age-dependent changes in the proteome following complete spinal cord transection in a postnatal South American Opossum (Monodelphis domestica). PLoS ONE, 6(11), [e27465]. https://doi.org/10.1371/journal.pone.0027465
Noor, Natassya M ; Steer, David L ; Wheaton, Benjamin J ; Ek, C Joakim ; Truettner, Jessie S ; Dietrich, W Dalton ; Dziegielewska, Katarzyna M ; Richardson, Samantha J ; Smith, Alexander Ian ; VandeBerg, John L ; Saunders, Norman R. / Age-dependent changes in the proteome following complete spinal cord transection in a postnatal South American Opossum (Monodelphis domestica). In: PLoS ONE. 2011 ; Vol. 6, No. 11.
@article{c11ef26f8583449780ba6f30d1aaa22a,
title = "Age-dependent changes in the proteome following complete spinal cord transection in a postnatal South American Opossum (Monodelphis domestica)",
abstract = "Recovery from severe spinal injury in adults is limited, compared to immature animals who demonstrate some capacity for repair. Using laboratory opossums (Monodelphis domestica), the aim was to compare proteomic responses to injury at two ages: one when there is axonal growth across the lesion and substantial behavioural recovery and one when no axonal growth occurs. Anaesthetized pups at postnatal day (P) 7 or P28 were subjected to complete transection of the spinal cord at thoracic level T10. Cords were collected 1 or 7 days after injury and from age-matched controls. Proteins were separated based on isoelectric point and subunit molecular weight; those whose expression levels changed following injury were identified by densitometry and analysed by mass spectrometry. Fifty-six unique proteins were identified as differentially regulated in response to spinal transection at both ages combined. More than 50 were cytoplasmic and 70 belonged to families of proteins with characteristic binding properties. Proteins were assigned to groups by biological function including regulation (40 ), metabolism (26 ), inflammation (19 ) and structure (15 ). More changes were detected at one than seven days after injury at both ages. Seven identified proteins: 14-3-3 epsilon, 14-3-3 gamma, cofilin, alpha enolase, heart fatty acid binding protein (FABP3), brain fatty acid binding protein (FABP7) and ubiquitin demonstrated age-related differential expression and were analysed by qRT-PCR. Changes in mRNA levels for FABP3 at P7+1day and ubiquitin at P28+1day were statistically significant. Immunocytochemical staining showed differences in ubiquitin localization in younger compared to older cords and an increase in oligodendrocyte and neuroglia immunostaining following injury at P28. Western blot analysis supported proteomic results for ubiquitin and 14-3-3 proteins. Data obtained at the two ages demonstrated changes in response to injury, compared to controls, that were different for different functional protein classes. Some may provide targets for novel drug or gene therapies.",
author = "Noor, {Natassya M} and Steer, {David L} and Wheaton, {Benjamin J} and Ek, {C Joakim} and Truettner, {Jessie S} and Dietrich, {W Dalton} and Dziegielewska, {Katarzyna M} and Richardson, {Samantha J} and Smith, {Alexander Ian} and VandeBerg, {John L} and Saunders, {Norman R}",
year = "2011",
doi = "10.1371/journal.pone.0027465",
language = "English",
volume = "6",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

Noor, NM, Steer, DL, Wheaton, BJ, Ek, CJ, Truettner, JS, Dietrich, WD, Dziegielewska, KM, Richardson, SJ, Smith, AI, VandeBerg, JL & Saunders, NR 2011, 'Age-dependent changes in the proteome following complete spinal cord transection in a postnatal South American Opossum (Monodelphis domestica)', PLoS ONE, vol. 6, no. 11, e27465. https://doi.org/10.1371/journal.pone.0027465

Age-dependent changes in the proteome following complete spinal cord transection in a postnatal South American Opossum (Monodelphis domestica). / Noor, Natassya M; Steer, David L; Wheaton, Benjamin J; Ek, C Joakim; Truettner, Jessie S; Dietrich, W Dalton; Dziegielewska, Katarzyna M; Richardson, Samantha J; Smith, Alexander Ian; VandeBerg, John L; Saunders, Norman R.

In: PLoS ONE, Vol. 6, No. 11, e27465, 2011.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Age-dependent changes in the proteome following complete spinal cord transection in a postnatal South American Opossum (Monodelphis domestica)

AU - Noor, Natassya M

AU - Steer, David L

AU - Wheaton, Benjamin J

AU - Ek, C Joakim

AU - Truettner, Jessie S

AU - Dietrich, W Dalton

AU - Dziegielewska, Katarzyna M

AU - Richardson, Samantha J

AU - Smith, Alexander Ian

AU - VandeBerg, John L

AU - Saunders, Norman R

PY - 2011

Y1 - 2011

N2 - Recovery from severe spinal injury in adults is limited, compared to immature animals who demonstrate some capacity for repair. Using laboratory opossums (Monodelphis domestica), the aim was to compare proteomic responses to injury at two ages: one when there is axonal growth across the lesion and substantial behavioural recovery and one when no axonal growth occurs. Anaesthetized pups at postnatal day (P) 7 or P28 were subjected to complete transection of the spinal cord at thoracic level T10. Cords were collected 1 or 7 days after injury and from age-matched controls. Proteins were separated based on isoelectric point and subunit molecular weight; those whose expression levels changed following injury were identified by densitometry and analysed by mass spectrometry. Fifty-six unique proteins were identified as differentially regulated in response to spinal transection at both ages combined. More than 50 were cytoplasmic and 70 belonged to families of proteins with characteristic binding properties. Proteins were assigned to groups by biological function including regulation (40 ), metabolism (26 ), inflammation (19 ) and structure (15 ). More changes were detected at one than seven days after injury at both ages. Seven identified proteins: 14-3-3 epsilon, 14-3-3 gamma, cofilin, alpha enolase, heart fatty acid binding protein (FABP3), brain fatty acid binding protein (FABP7) and ubiquitin demonstrated age-related differential expression and were analysed by qRT-PCR. Changes in mRNA levels for FABP3 at P7+1day and ubiquitin at P28+1day were statistically significant. Immunocytochemical staining showed differences in ubiquitin localization in younger compared to older cords and an increase in oligodendrocyte and neuroglia immunostaining following injury at P28. Western blot analysis supported proteomic results for ubiquitin and 14-3-3 proteins. Data obtained at the two ages demonstrated changes in response to injury, compared to controls, that were different for different functional protein classes. Some may provide targets for novel drug or gene therapies.

AB - Recovery from severe spinal injury in adults is limited, compared to immature animals who demonstrate some capacity for repair. Using laboratory opossums (Monodelphis domestica), the aim was to compare proteomic responses to injury at two ages: one when there is axonal growth across the lesion and substantial behavioural recovery and one when no axonal growth occurs. Anaesthetized pups at postnatal day (P) 7 or P28 were subjected to complete transection of the spinal cord at thoracic level T10. Cords were collected 1 or 7 days after injury and from age-matched controls. Proteins were separated based on isoelectric point and subunit molecular weight; those whose expression levels changed following injury were identified by densitometry and analysed by mass spectrometry. Fifty-six unique proteins were identified as differentially regulated in response to spinal transection at both ages combined. More than 50 were cytoplasmic and 70 belonged to families of proteins with characteristic binding properties. Proteins were assigned to groups by biological function including regulation (40 ), metabolism (26 ), inflammation (19 ) and structure (15 ). More changes were detected at one than seven days after injury at both ages. Seven identified proteins: 14-3-3 epsilon, 14-3-3 gamma, cofilin, alpha enolase, heart fatty acid binding protein (FABP3), brain fatty acid binding protein (FABP7) and ubiquitin demonstrated age-related differential expression and were analysed by qRT-PCR. Changes in mRNA levels for FABP3 at P7+1day and ubiquitin at P28+1day were statistically significant. Immunocytochemical staining showed differences in ubiquitin localization in younger compared to older cords and an increase in oligodendrocyte and neuroglia immunostaining following injury at P28. Western blot analysis supported proteomic results for ubiquitin and 14-3-3 proteins. Data obtained at the two ages demonstrated changes in response to injury, compared to controls, that were different for different functional protein classes. Some may provide targets for novel drug or gene therapies.

UR - http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0027465

U2 - 10.1371/journal.pone.0027465

DO - 10.1371/journal.pone.0027465

M3 - Article

VL - 6

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 11

M1 - e27465

ER -