AFM nanoindentations of diatom biosilica surfaces

Dusan Losic, Ken Short, James G. Mitchell, Ratnesh Lal, Nicolas H. Voelcker

Research output: Contribution to journalArticleResearchpeer-review

99 Citations (Scopus)

Abstract

Diatoms have intricately and uniquely nanopatterned silica exoskeletons (frustules) and are a common target of biomimetic investigations. A better understanding of the diatom frustule structure and function at the nanoscale could provide new insights for the biomimetic fabrication of nanostructured ceramic materials and lightweight, yet strong, scaffold architectures. Here, we have mapped the nanoscale mechanical properties of Coscinodiscus sp. diatoms using atomic force microscopy (AFM)-based nanoindentation. Mechanical properties were correlated with the frustule structures obtained from high-resolution AFM and scanning electron microscopy (SEM). Significant differences in the micromechanical properties for the different frustule layers were observed. A comparative study of other related inorganic material including porous silicon films and free-standing membranes as well as porous alumina was also undertaken.

Original languageEnglish
Pages (from-to)5014-5021
Number of pages8
JournalLangmuir
Volume23
Issue number9
DOIs
Publication statusPublished - 24 Apr 2007
Externally publishedYes

Cite this