## Abstract

This study examines whether and how student-perceived parents' and teachers' overestimation of students' own perceived mathematical ability can explain trajectories for adolescents' mathematical task values (intrinsic and utility) controlling for measured achievement, following expectancy-value and self-determination theories. Longitudinal data come from a 3-cohort (mean ages 13.25, 12.36, and 14.41 years; Grades 7-10), 4-wave data set of 1,271 Australian secondary school students. Longitudinal structural equation models revealed positive effects of student-perceived overestimation of math ability by parents and teachers on students' intrinsic and utility math task values development. Perceived parental overestimations predicted intrinsic task value changes between all measurement occasions, whereas utility task value changes only were predicted between Grades 9 and 10. Parental influences were stronger for intrinsic than utility task values. Teacher influences were similar for both forms of task values and commenced after the curricular school transition in Grade 8. Results support the assumptions that the perceived encouragement conveyed by student-perceived mathematical ability beliefs of parents and teachers, promote positive mathematics task values development. Moreover, results point to different mechanisms underlying parents' and teachers' support. Finally, the longitudinal changes indicate transition-related increases in the effects of student-perceived overestimations and stronger effects for intrinsic than utility values.

Original language | English |
---|---|

Pages (from-to) | 1371-1383 |

Number of pages | 13 |

Journal | Developmental Psychology |

Volume | 53 |

Issue number | 7 |

DOIs | |

Publication status | Published - 1 Jul 2017 |

## Keywords

- Adolescence
- Mathematics
- Parents' beliefs
- Task values
- Teachers' beliefs