Additively manufactured, highly-uniform flow distributor for process intensification

Maciej Mazur, Tejas Bhatelia, Benny Kuan, Jim Patel, Paul A. Webley, Milan Brandt, Vishnu Pareek, Ranjeet Utikar

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)

Abstract

The ability of flow distributors to achieve high flow uniformity over multiple outlet channels is fundamental to the scalability of the synthesis of pharmaceuticals, polymers, fine chemicals, nanoparticles, and medical devices (for drug delivery). Recent developments in the field of additive manufacturing (AM) have significantly increased the range of manufacturable geometries and materials, enabling the construction of high-performance flow distribution devices. Such devices can be manufactured at a wide range of scales (from microns to meters) and from a variety of metal and polymer materials. In this work, we describe a flow distribution system based on a fractal bifurcation scheme, which achieves high outlet flow uniformity and packing density, while satisfying additive manufacturing constraints. Performance is predicted using an extensive numerical study and subsequently validated using experimental testing of additively manufactured prototypes. The experimental results confirm the predicted high flow uniformity. The resulting flow distribution system has the potential for use in a wide range of applications.

Original languageEnglish
Article number107595
Number of pages14
JournalChemical Engineering and Processing: Process Intensification
Volume143
DOIs
Publication statusPublished - Sep 2019
Externally publishedYes

Keywords

  • Additive manufacturing
  • CFD
  • Flow distribution
  • Fractal
  • Manifold
  • Milli-channel distributor
  • Selective laser melting

Cite this