Adaptive strategy for demosaicing microgrid polarimeter imagery

Bradley M. Ratliff, Charles F. LaCasse, J. Scott Tyo

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

16 Citations (Scopus)


Microgrid imaging polarimeters consist of a focal plane array sensor with linear polarization filters of differing orientations overlaid at each pixel, similar in concept to the arrangement of spectral filters in a color CCD Bayer pattern camera. However, unlike spectral color cameras, microgrid systems use polarimetrically modulated intensity measurements to reconstruct the Stokes vector at each point in an imaged scene. Stokes reconstruction of imagery from these devices has traditionally been performed using linear filtering techniques. While linear filtering strategies can yield reasonable estimates of the Stokes imagery, the filtering often results in loss of high frequency content in addition to introducing typical demosaicing artifacts (such as aliasing and zippering effects). Here we develop an adaptive demosaicing strategy based upon the concept of bilateral filtering as a means for reducing interpolation artifacts while preserving high frequency image content often removed by non-adaptive linear interpolators. We demonstrate the demosaicing strategy and compare it against imagery estimated using other techniques on LWIR microgrid data.

Original languageEnglish
Title of host publication2011 Aerospace Conference, AERO 2011
PublisherIEEE, Institute of Electrical and Electronics Engineers
ISBN (Print)9781424473502
Publication statusPublished - 2011
Externally publishedYes
EventIEEE Aerospace Conference 2011 - Big Sky, United States of America
Duration: 5 Mar 201112 Mar 2011

Publication series

NameIEEE Aerospace Conference Proceedings
ISSN (Print)1095-323X


ConferenceIEEE Aerospace Conference 2011
Abbreviated titleAERO 2011
Country/TerritoryUnited States of America
CityBig Sky
Internet address

Cite this