Activin Biology After Lung Transplantation

Research output: Contribution to journalArticleResearchpeer-review

Abstract

BACKGROUND: Activins A and B, members of the TGF-β superfamily, are produced as part of the physiological response to tissue damage and the resulting proinflammatory response. Given that lung allograft reperfusion results in an inflammatory response, it is likely that the activins and their binding protein follistatin will form part of the regulatory response. There is a need to document the response of these proteins to allograft reperfusion to determine if there is a role for the use of follistatin to control the biological actions of the activins because some of these are potentially damaging. METHODS: Serum from 48 consecutive patients undergoing lung transplantation (LTx) was collected at 2, 6, 12, and 26 weeks post-LTx. The serum levels of activin A and B and follistatin were measured by enzyme-linked immunosorbent assay and specific radioimmunoassays and compared with clinical events. RESULTS: Serum activin A and B levels were at the upper limit of the normal ranges at 2 weeks post-LTx decreasing thereafter to 12 weeks post-LTx (P < 0.05). In contrast, serum follistatin levels were unchanged between 2 and 12 weeks, with a late significant increase at 24 week post-LTx (P < 0.01). Patients with primary graft dysfunction had lower serum follistatin levels (7.7 vs 9.5 ng/mL; P = 0.04) and a higher activin A/follistatin ratio (13.1 vs 10.4; P = 0.02) at 2 weeks post-LTx. CONCLUSIONS: Activin and follistatin levels vary with time form LTX and reflect a proinflammatory environment. Future studies will elucidate associations with chronic lung allograft dysfunction and the therapeutic potential of exogenous follistatin administration.
LanguageEnglish
Article numbere159
Number of pages6
JournalTransplantation Direct
Volume3
Issue number6
DOIs
Publication statusPublished - May 2017

Cite this

@article{47a955f4b846429aa73de268e96b212d,
title = "Activin Biology After Lung Transplantation",
abstract = "BACKGROUND: Activins A and B, members of the TGF-β superfamily, are produced as part of the physiological response to tissue damage and the resulting proinflammatory response. Given that lung allograft reperfusion results in an inflammatory response, it is likely that the activins and their binding protein follistatin will form part of the regulatory response. There is a need to document the response of these proteins to allograft reperfusion to determine if there is a role for the use of follistatin to control the biological actions of the activins because some of these are potentially damaging. METHODS: Serum from 48 consecutive patients undergoing lung transplantation (LTx) was collected at 2, 6, 12, and 26 weeks post-LTx. The serum levels of activin A and B and follistatin were measured by enzyme-linked immunosorbent assay and specific radioimmunoassays and compared with clinical events. RESULTS: Serum activin A and B levels were at the upper limit of the normal ranges at 2 weeks post-LTx decreasing thereafter to 12 weeks post-LTx (P < 0.05). In contrast, serum follistatin levels were unchanged between 2 and 12 weeks, with a late significant increase at 24 week post-LTx (P < 0.01). Patients with primary graft dysfunction had lower serum follistatin levels (7.7 vs 9.5 ng/mL; P = 0.04) and a higher activin A/follistatin ratio (13.1 vs 10.4; P = 0.02) at 2 weeks post-LTx. CONCLUSIONS: Activin and follistatin levels vary with time form LTX and reflect a proinflammatory environment. Future studies will elucidate associations with chronic lung allograft dysfunction and the therapeutic potential of exogenous follistatin administration.",
author = "Westall, {Glen P.} and Snell, {Gregory I.} and Monika Loskot and Bronwyn Levvey and O'Hehir, {Robyn E} and Hedger, {Mark P.} and {de Kretser}, {David M.}",
year = "2017",
month = "5",
doi = "10.1097/TXD.0000000000000676",
language = "English",
volume = "3",
journal = "Transplantation Direct",
issn = "2373-8731",
publisher = "Lippincott Williams & Wilkins",
number = "6",

}

Activin Biology After Lung Transplantation. / Westall, Glen P.; Snell, Gregory I.; Loskot, Monika; Levvey, Bronwyn; O'Hehir, Robyn E; Hedger, Mark P.; de Kretser, David M.

In: Transplantation Direct, Vol. 3, No. 6, e159, 05.2017.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Activin Biology After Lung Transplantation

AU - Westall, Glen P.

AU - Snell, Gregory I.

AU - Loskot, Monika

AU - Levvey, Bronwyn

AU - O'Hehir, Robyn E

AU - Hedger, Mark P.

AU - de Kretser, David M.

PY - 2017/5

Y1 - 2017/5

N2 - BACKGROUND: Activins A and B, members of the TGF-β superfamily, are produced as part of the physiological response to tissue damage and the resulting proinflammatory response. Given that lung allograft reperfusion results in an inflammatory response, it is likely that the activins and their binding protein follistatin will form part of the regulatory response. There is a need to document the response of these proteins to allograft reperfusion to determine if there is a role for the use of follistatin to control the biological actions of the activins because some of these are potentially damaging. METHODS: Serum from 48 consecutive patients undergoing lung transplantation (LTx) was collected at 2, 6, 12, and 26 weeks post-LTx. The serum levels of activin A and B and follistatin were measured by enzyme-linked immunosorbent assay and specific radioimmunoassays and compared with clinical events. RESULTS: Serum activin A and B levels were at the upper limit of the normal ranges at 2 weeks post-LTx decreasing thereafter to 12 weeks post-LTx (P < 0.05). In contrast, serum follistatin levels were unchanged between 2 and 12 weeks, with a late significant increase at 24 week post-LTx (P < 0.01). Patients with primary graft dysfunction had lower serum follistatin levels (7.7 vs 9.5 ng/mL; P = 0.04) and a higher activin A/follistatin ratio (13.1 vs 10.4; P = 0.02) at 2 weeks post-LTx. CONCLUSIONS: Activin and follistatin levels vary with time form LTX and reflect a proinflammatory environment. Future studies will elucidate associations with chronic lung allograft dysfunction and the therapeutic potential of exogenous follistatin administration.

AB - BACKGROUND: Activins A and B, members of the TGF-β superfamily, are produced as part of the physiological response to tissue damage and the resulting proinflammatory response. Given that lung allograft reperfusion results in an inflammatory response, it is likely that the activins and their binding protein follistatin will form part of the regulatory response. There is a need to document the response of these proteins to allograft reperfusion to determine if there is a role for the use of follistatin to control the biological actions of the activins because some of these are potentially damaging. METHODS: Serum from 48 consecutive patients undergoing lung transplantation (LTx) was collected at 2, 6, 12, and 26 weeks post-LTx. The serum levels of activin A and B and follistatin were measured by enzyme-linked immunosorbent assay and specific radioimmunoassays and compared with clinical events. RESULTS: Serum activin A and B levels were at the upper limit of the normal ranges at 2 weeks post-LTx decreasing thereafter to 12 weeks post-LTx (P < 0.05). In contrast, serum follistatin levels were unchanged between 2 and 12 weeks, with a late significant increase at 24 week post-LTx (P < 0.01). Patients with primary graft dysfunction had lower serum follistatin levels (7.7 vs 9.5 ng/mL; P = 0.04) and a higher activin A/follistatin ratio (13.1 vs 10.4; P = 0.02) at 2 weeks post-LTx. CONCLUSIONS: Activin and follistatin levels vary with time form LTX and reflect a proinflammatory environment. Future studies will elucidate associations with chronic lung allograft dysfunction and the therapeutic potential of exogenous follistatin administration.

U2 - 10.1097/TXD.0000000000000676

DO - 10.1097/TXD.0000000000000676

M3 - Article

VL - 3

JO - Transplantation Direct

T2 - Transplantation Direct

JF - Transplantation Direct

SN - 2373-8731

IS - 6

M1 - e159

ER -