Abstract
Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.
Original language | English |
---|---|
Title of host publication | Physics Procedia |
Subtitle of host publication | Proceedings of the 2015 International Congress on Ultrasonics, 2015 ICU, Metz, France, May 10-14 |
Editors | Nico Felicien Declercq de Patin |
Place of Publication | Amsterdam, Netherlands |
Publisher | Elsevier |
Pages | 6-9 |
Number of pages | 4 |
Volume | 70 |
DOIs | |
Publication status | Published - 2015 |
Event | International Congress on Ultrasonics 2015 - Metz, France Duration: 10 May 2015 → 14 May 2015 |
Conference
Conference | International Congress on Ultrasonics 2015 |
---|---|
Abbreviated title | ICU 2015 |
Country/Territory | France |
City | Metz |
Period | 10/05/15 → 14/05/15 |
Keywords
- Acoustic levitation
- Acoustic resonator
- Particle manipulation
- Ultrasonic standing wave