Accretion of the cratonic mantle lithosphere via massive regional relamination

Zhensheng Wang, Fabio A. Capitanio, Zaicong Wang, Timothy M. Kusky

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)


Continental, orogenic, and oceanic lithospheric mantle embeds sizeable parcels of exotic cratonic lithospheric mantle (CLM) derived from distant, unrelated sources. This hints that CLM recycling into the mantle and its eventual upwelling and relamination at the base of younger plates contribute to the complex structure of the growing lithosphere. Here, we use numerical modeling to investigate the fate and survival of recycled CLM in the ambient mantle and test the viability of CLM relamination under Hadean to present-day mantle temperature conditions and its role in early lithosphere evolution. We show that the foundered CLM is partially mixed and homogenized in the ambient mantle; then, as thermal negative buoyancy vanishes, its long-lasting compositional buoyancy drives upwelling, relaminating unrelated growing lithospheric plates and contributing to differentiation under cratonic, orogenic, and oceanic regions. Parts of the CLM remain in the mantle as diffused depleted heterogeneities at multiple scales, which can survive for billions of years. Relamination is maximized for high depletion degrees and mantle temperatures compatible with the early Earth, leading to the upwelling and underplating of large volumes of foundered CLM, a process we name massive regional relamination (MRR). MRR explains the complex source, age, and depletion heterogeneities found in ancient cratonic lithospheric mantle, suggesting this may have been a key component of the construction of continents in the early Earth.

Original languageEnglish
Article numbere2201226119
Number of pages10
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number39
Publication statusPublished - 27 Sept 2022


  • craton
  • lithospheric mantle
  • mantle heterogeneities
  • relamination

Cite this