Abstract
Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ''van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.
Original language | English |
---|---|
Article number | P01010 |
Number of pages | 47 |
Journal | Journal of Instrumentation |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2012 |
Externally published | Yes |
Keywords
- Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons)
- Pattern recognition, cluster finding, calibration and fitting methods
Access to Document
Other files and links
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Absolute luminosity measurements with the LHCb detector at the LHC. / The LHCb Collaboration.
In: Journal of Instrumentation, Vol. 7, No. 1, P01010, 01.01.2012.Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Absolute luminosity measurements with the LHCb detector at the LHC
AU - Aaij, R.
AU - Adeva, B.
AU - Adinolfi, M.
AU - Adrover, C.
AU - Affolder, A.
AU - Ajaltouni, Z.
AU - Albrecht, J.
AU - Alessio, F.
AU - Alexander, M.
AU - Alkhazov, G.
AU - Alvarez Cartelle, P.
AU - Alves, A. A.
AU - Amato, S.
AU - Amhis, Y.
AU - Anderson, J.
AU - Appleby, R. B.
AU - Aquines Gutierrez, O.
AU - Archilli, F.
AU - Arrabito, L.
AU - Artamonov, A.
AU - Artuso, M.
AU - Aslanides, E.
AU - Auriemma, G.
AU - Bachmann, S.
AU - Back, J. J.
AU - Bailey, D. S.
AU - Balagura, V.
AU - Baldini, W.
AU - Barlow, R. J.
AU - Barschel, C.
AU - Barsuk, S.
AU - Barter, W.
AU - Bates, A.
AU - Bauer, C.
AU - Bauer, Th
AU - Bay, A.
AU - Bediaga, I.
AU - Belous, K.
AU - Belyaev, I.
AU - Ben-Haim, E.
AU - Benayoun, M.
AU - Bencivenni, G.
AU - Benson, S.
AU - Benton, J.
AU - Bernet, R.
AU - M.-O. Bettler, Bettler
AU - Van Beuzekom, M.
AU - Bien, A.
AU - Bifani, S.
AU - Bizzeti, A.
AU - Bjørnstad, P. M.
AU - Blake, T.
AU - Blanc, F.
AU - Blanks, C.
AU - Blouw, J.
AU - Blusk, S.
AU - Bobrov, A.
AU - Bocci, V.
AU - Bondar, A.
AU - Bondar, N.
AU - Bonivento, W.
AU - Borghi, S.
AU - Borgia, A.
AU - T.j.v. Bowcock, Bowcock
AU - Bozzi, C.
AU - Brambach, T.
AU - Van Den Brand, J.
AU - Bressieux, J.
AU - Brett, D.
AU - Brisbane, S.
AU - Britsch, M.
AU - Britton, T.
AU - Brook, N. H.
AU - Brown, H.
AU - Büchler-Germann, A.
AU - Burducea, I.
AU - Bursche, A.
AU - Buytaert, J.
AU - Cadeddu, S.
AU - Caicedo Carvajal, J. M.
AU - Callot, O.
AU - Calvi, M.
AU - Calvo Gomez, M.
AU - Camboni, A.
AU - Campana, P.
AU - Carbone, A.
AU - Carboni, G.
AU - Cardinale, R.
AU - Cardini, A.
AU - Carson, L.
AU - Carvalho Akiba, K.
AU - Casse, G.
AU - Cattaneo, M.
AU - Charles, M.
AU - Charpentier, Ph
AU - Chiapolini, N.
AU - Ciba, K.
AU - Cid Vidal, X.
AU - Ciezarek, G.
AU - P.e.l. Clarke, Clarke
AU - Clemencic, M.
AU - Cliff, H. V.
AU - Closier, J.
AU - Coca, C.
AU - Coco, V.
AU - Cogan, J.
AU - Collins, P.
AU - Constantin, F.
AU - Conti, G.
AU - Contu, A.
AU - Cook, A.
AU - Coombes, M.
AU - Corti, G.
AU - Cowan, G. A.
AU - Currie, R.
AU - DAlmagne, B.
AU - DAmbrosio, C.
AU - David, P.
AU - De Bonis, I.
AU - De Capua, S.
AU - De Cian, M.
AU - De Lorenzi, F.
AU - De Miranda, J. M.
AU - De Paula, L.
AU - De Simone, P.
AU - Decamp, D.
AU - Deckenhoff, M.
AU - Degaudenzi, H.
AU - Deissenroth, M.
AU - Del Buono, L.
AU - Deplano, C.
AU - Deschamps, O.
AU - Dettori, F.
AU - Dickens, J.
AU - Dijkstra, H.
AU - Diniz Batista, P.
AU - Donleavy, S.
AU - Dordei, F.
AU - Dosil Súarez, A.
AU - Dossett, D.
AU - Dovbnya, A.
AU - Dupertuis, F.
AU - Dzhelyadin, R.
AU - Eames, C.
AU - Easo, S.
AU - Egede, U.
AU - Egorychev, V.
AU - Eidelman, S.
AU - Van Eijk, D.
AU - Eisele, F.
AU - Eisenhardt, S.
AU - Ekelhof, R.
AU - Eklund, L.
AU - Elsasser, Ch
AU - DEnterria, D. G.
AU - Esperante Pereira, D.
AU - Estève, L.
AU - Falabella, A.
AU - Fanchini, E.
AU - Färber, C.
AU - Fardell, G.
AU - Farinelli, C.
AU - Farry, S.
AU - Fave, V.
AU - Fernandez Albor, V.
AU - Ferro-Luzzi, M.
AU - Filippov, S.
AU - Fitzpatrick, C.
AU - Fontana, M.
AU - Fontanelli, F.
AU - Forty, R.
AU - Frank, M.
AU - Frei, C.
AU - Frosini, M.
AU - Furcas, S.
AU - Gallas Torreira, A.
AU - Galli, D.
AU - Gandelman, M.
AU - Gandini, P.
AU - Gao, Y.
AU - J-C. Garnier, Garnier
AU - Garofoli, J.
AU - Garra Tico, J.
AU - Garrido, L.
AU - Gaspar, C.
AU - Gauvin, N.
AU - Gersabeck, M.
AU - Gershon, T.
AU - Ghez, Ph
AU - Gibson, V.
AU - Gligorov, V. V.
AU - Göbel, C.
AU - Golubkov, D.
AU - Golutvin, A.
AU - Gomes, A.
AU - Gordon, H.
AU - Grabalosa Gándara, M.
AU - Graciani Diaz, R.
AU - Granado Cardoso, L. A.
AU - Graugés, E.
AU - Graziani, G.
AU - Grecu, A.
AU - Gregson, S.
AU - Gui, B.
AU - Gushchin, E.
AU - Guz, Yu
AU - Gys, T.
AU - Haefeli, G.
AU - Haen, C.
AU - Haines, S. C.
AU - Hampson, T.
AU - Hansmann-Menzemer, S.
AU - Harji, R.
AU - Harnew, N.
AU - Harrison, J.
AU - Harrison, P. F.
AU - He, J.
AU - Heijne, V.
AU - Hennessy, K.
AU - Henrard, P.
AU - Hernando Morata, J. A.
AU - Van Herwijnen, E.
AU - Hicks, E.
AU - Hofmann, W.
AU - Holubyev, K.
AU - Hopchev, P.
AU - Hulsbergen, W.
AU - Hunt, P.
AU - Huse, T.
AU - Huston, R. S.
AU - Hutchcroft, D.
AU - Hynds, D.
AU - Iakovenko, V.
AU - Ilten, P.
AU - Imong, J.
AU - Jacobsson, R.
AU - Jaeger, A.
AU - Jahjah Hussein, M.
AU - Jans, E.
AU - Jansen, F.
AU - Jaton, P.
AU - Jean-Marie, B.
AU - Jing, F.
AU - John, M.
AU - Johnson, D.
AU - Jones, C. R.
AU - Jost, B.
AU - Kandybei, S.
AU - Karacson, M.
AU - Karbach, T. M.
AU - The LHCb Collaboration
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ''van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.
AB - Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ''van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.
KW - Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons)
KW - Pattern recognition, cluster finding, calibration and fitting methods
UR - http://www.scopus.com/inward/record.url?scp=84863116149&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/7/01/P01010
DO - 10.1088/1748-0221/7/01/P01010
M3 - Article
AN - SCOPUS:84863116149
VL - 7
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 1
M1 - P01010
ER -