A wind energy supplier bidding strategy using combined ega-inspired hpsoifa optimizer and deep learning predictor

Rongquan Zhang, Saddam Aziz, Muhammad Umar Farooq, Kazi Nazmul Hasan, Nabil Mohammed, Sadiq Ahmad, Nisrine Ibadah

Research output: Contribution to journalArticleResearchpeer-review

Abstract

As the integration of large-scale wind energy is increasing into the electricity grids, the role of wind energy suppliers should be investigated as a price-maker as their participation would influence the locational marginal price (LMP) of electricity. The existing bidding strategies for a wind energy supplier faces limitations with respect to the potential cooperation, other competitors’ bidding behavior, network loss, and uncertainty of wind production (WP) and balancing market price (BMP). Hence, to solve these problems, a novel bidding strategy (BS) for a wind power supplier as a price-maker has been proposed in this paper. The new algorithm, called the evolutionary game approach (EGA) inspired hybrid particle swarm optimization and improved firefly algorithm (HPSOIFA), has been proposed to handle the bidding issue. The bidding behavior of power suppliers, including conventional power suppliers, has been encoded as one species to obtain the equilibrium where the EGA can explore dynamically reasonable behavior changes of the opponents. Each species of behavior change has been exploited by the HPSOIFA to improve the optimization solutions. Moreover, a deep learning algorithm, namely deep belief network, has been implemented for improving the accuracy of the forecasting results considering the WP and BMP, and the uncertainty revealed in the WP and BMP has been modeled by quantile regression (QR). Finally, the Shapley value (SV) has been calculated to estimate the benefits of cooperative power suppliers. The presented case studies have verified that the proposed algorithm and the established bidding strategy exhibit higher effectiveness.

Original languageEnglish
Article number3059
Number of pages22
JournalEnergies
Volume14
Issue number11
DOIs
Publication statusPublished - 25 May 2021
Externally publishedYes

Keywords

  • Cooperation
  • Deep belief network
  • Hybrid optimization
  • Network loss
  • Wind energy bidding

Cite this