A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids

Research output: Contribution to journalArticleResearchpeer-review

33 Citations (Scopus)

Abstract

Three-dimensional (3D) cell culture systems include bioengineered microenvironments that mimic the complexity of human tissues and organs in vitro. Robust biological models, like organoids and spheroids, rely on biomaterials to emulate the biochemical and biomechanical properties found in the extracellular matrix (ECM). Collagen (COL) is the main protein component of the ECM and has been used to generate fibrous matrices for 3D cell culture. Whilst neat COL gels are commonly blended with inert polymers to improve their poor mechanical properties, whether nanocellulose (NC) fibers interact or can develop some synergic bioactive effect to support organoid systems has never been demonstrated. Here, we investigate collagen-nanocellulose (COL-NC) hydrogels as a thermo-responsive matrix for the formation and growth of intestinal organoids. Cellulose nanofibres grafted with fibronectin-like adhesive sites form a porous network with type I collagen, presenting a sol-gel transition and viscoelastic profile similar to those of standard animal-based matrices. Crypts embedded in COL-NC form organoids with evidence of epithelial budding. Cell viability and metabolic activity are preserved as well as the expression of key cell markers. The stiffness of COL-NC hydrogels is shown to be a determinant element for the formation and development organoids. COL-NC hydrogels provide an affordable, performant thermo-responsive and sustainable matrix for organoid growth.

Original languageEnglish
Article number112051
Number of pages9
JournalMaterials Science and Engineering C
Volume124
DOIs
Publication statusPublished - May 2021

Keywords

  • Collagen
  • Hydrogel
  • Nanocellulose
  • Organoids
  • Stiffness
  • Thermo-responsive

Cite this