A systematic review of uncertainty theory with the use of scientometrical method

Jian Zhou, Yujiao Jiang, Athanasios A. Pantelous, Weiwen Dai

Research output: Contribution to journalReview ArticleResearchpeer-review

Abstract

Uncertainty theory is an area in axiomatic mathematics recently proposed by Professor Baoding Liu and aiming to deal with belief degrees. Retrieving 1004 journal articles from the Web of Science database between 2008 and 2019, and utilizing CiteSpace and Pajek software, we analyze the publications per year and by geographical distribution, productive scholars and their cooperation, key journals, highly cited articles and main paths of the field. In this way, seven key sub-fields of uncertainty theory and their research potential are derived. The results show the following: (1) The literature on uncertainty theory follows a linear growth trend, involves an extensive network of 1000 scholars worldwide and is published in 300 journals, indicating thus that uncertainty theory has become increasingly attractive, and its academic influence is gradually expanding. (2) Seven key sub-fields of uncertainty theory have clearly been identified, including the axiomatic system, uncertain programming, uncertain sets, uncertain logic, uncertain differential equations, uncertain risk analysis, and uncertain processes. Among them, uncertain differential equations and programming are the two main sub-fields with the largest numbers of published papers. Furthermore, for evaluating the research potential of sub-fields, maturity and recent attention indicators are calculated using the citations, total number of publications, quantity of most cited literature and half-life. Based on these indicators, uncertain processes shows the greatest development potential, and has remained a hot topic in recent years, being mainly concentrated on the uncertain renewal reward process, optimal control of discrete-time uncertain systems, and uncertain linear quadratic optimal control. Additionally, uncertain risk analysis is ranked second, and focuses on the analysis of expected losses, investment risk, and structural reliability of uncertain systems.

Original languageEnglish
Number of pages56
JournalFuzzy Optimization and Decision Making
DOIs
Publication statusAccepted/In press - 2022

Keywords

  • Bibliometrics
  • CiteSpace
  • Key sub-fields
  • Research potential
  • Uncertainty theory

Cite this