A study of two-dimensional flow past an oscillating cylinder

H. M. Blackburn, R. D. Henderson

Research output: Contribution to journalArticleResearchpeer-review

305 Citations (Scopus)

Abstract

In this paper we describe a detailed study of the wake structures and flow dynamics associated with simulated two-dimensional flows past a circular cylinder that is either stationary or in simple harmonic cross-flow oscillation. Results are examined for Re = 500 and a fixed motion amplitude of ymax/D = 0.25. The study concentrates on a domain of oscillation frequencies near the natural shedding frequency of the fixed cylinder. In addition to the change in phase of vortex shedding with respect to cylinder motion observed in previous experimental studies, we note a central band of frequencies for which the wake exhibits long-time-scale relaxation oscillator behaviour. Time-periodic states with asymmetric wake structures and non-zero mean lift were also observed for oscillation frequencies near the lower edge of the relaxation oscillator band. In this regime we compute a number of bifurcations between different wake configurations and show that the flow state is not a unique function of the oscillation frequency. Results are interpreted using an analysis of vorticity generation and transport in the base region of the cylinder. We suggest that the dynamics of the change in phase of shedding arise from a competition between two different mechanisms of vorticity production.

Original languageEnglish
Pages (from-to)255-286
Number of pages32
JournalJournal of Fluid Mechanics
Volume385
DOIs
Publication statusPublished - 25 Apr 1999

Cite this