A structurally simple but high-performing donor–acceptor polymer for field-effect transistor applications

Filip Aniés, Simeng Wang, Thomas Hodsden, Julianna Panidi, Zhuping Fei, Xuechen Jiao, Yi Hang Cherie Wong, Christopher R. McNeill, Thomas D. Anthopoulos, Martin Heeney

Research output: Contribution to journalArticleResearchpeer-review

Abstract

A straightforward synthesis is reported for four structurally simple donor–acceptor conjugated polymers based on an alkylated difluorobenzotriazole and either unsubstituted bithiophene (T2) or thienylvinylthiophene (TVT) co-monomers. Two solubilizing sidechains are investigated in which the position of the branching point is moved away from the conjugated backbone. Optoelectronic measurements and density functional theory calculations show very similar energetic properties between the polymers, with a slightly narrower bandgap for the vinylene incorporating TVT polymers as a result of extended conjugation. Transistor measurements demonstrate that the simplest polymer, containing a readily available 2-decyltetradecyl sidechain with a T2 co-monomer, exhibits the best device performance, with an average saturated mobility of 0.2 cm2 V−1 s−1.

Original languageEnglish
Article number2000490
Number of pages9
JournalAdvanced Electronic Materials
Volume6
Issue number9
DOIs
Publication statusPublished - Sep 2020

Keywords

  • conjugated polymers
  • organic transistors
  • polymer semiconductors

Cite this