TY - JOUR
T1 - A stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium falciparum
AU - Egée, Stéphane
AU - Lapaix, Franck
AU - Decherf, Gaëtan
AU - Staines, Henry M.
AU - Ellory, J. Clive
AU - Doerig, Christian
AU - Thomas, Serge L Y
PY - 2002/8/1
Y1 - 2002/8/1
N2 - A recent study on malaria-infected human red blood cells (RBCs) has shown induced ion channel activity in the host cell membrane, but the questions of whether they are host- or parasite-derived and their molecular nature have not been resolved. Here we report a comparison of a malaria-induced anion channel with an endogenous anion channel in Plasmodium falciparum-infected human RBCs. Ion channel activity was measured using the whole-cell, cell-attached and excised inside-out configurations of the patch-clamp method. Parasitised RBCs were cultured in vitro, using co-cultured uninfected RBCs as controls. Unstimulated uninfected RBCs possessed negligible numbers of active anion channels. However, anion channels could be activated in the presence of protein kinase A (PKA) and ATP in the pipette solution or by membrane deformation. These channels displayed linear conductance (∼15 pS), were blocked by known anion channel inhibitors and showed the permeability sequence I- > Br- > Cl-. In addition, in less than 5% of excised patches, an outwardly rectifying anion channel (∼80 pS, outward conductance) was spontaneously active. The host membrane of malaria-infected RBCs possessed spontaneously active anion channel activity, with identical conductances, pharmacology and selectivity to the linear conductance channel measured in stimulated uninfected RBCs. Furthermore, the channels measured in malaria-infected RBCs were shown to have a low open-state probability (Po) at positive potentials, which explains the inward rectification of membrane conductance observed when using the whole-cell configuration. The data are consistent with the presence of two endogenous anion channels in human RBCs, of which one (the linear conductance channel) is up-regulated by the malaria parasite P. falciparum.
AB - A recent study on malaria-infected human red blood cells (RBCs) has shown induced ion channel activity in the host cell membrane, but the questions of whether they are host- or parasite-derived and their molecular nature have not been resolved. Here we report a comparison of a malaria-induced anion channel with an endogenous anion channel in Plasmodium falciparum-infected human RBCs. Ion channel activity was measured using the whole-cell, cell-attached and excised inside-out configurations of the patch-clamp method. Parasitised RBCs were cultured in vitro, using co-cultured uninfected RBCs as controls. Unstimulated uninfected RBCs possessed negligible numbers of active anion channels. However, anion channels could be activated in the presence of protein kinase A (PKA) and ATP in the pipette solution or by membrane deformation. These channels displayed linear conductance (∼15 pS), were blocked by known anion channel inhibitors and showed the permeability sequence I- > Br- > Cl-. In addition, in less than 5% of excised patches, an outwardly rectifying anion channel (∼80 pS, outward conductance) was spontaneously active. The host membrane of malaria-infected RBCs possessed spontaneously active anion channel activity, with identical conductances, pharmacology and selectivity to the linear conductance channel measured in stimulated uninfected RBCs. Furthermore, the channels measured in malaria-infected RBCs were shown to have a low open-state probability (Po) at positive potentials, which explains the inward rectification of membrane conductance observed when using the whole-cell configuration. The data are consistent with the presence of two endogenous anion channels in human RBCs, of which one (the linear conductance channel) is up-regulated by the malaria parasite P. falciparum.
UR - http://www.scopus.com/inward/record.url?scp=0036686061&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2002.022970
DO - 10.1113/jphysiol.2002.022970
M3 - Article
C2 - 12154179
AN - SCOPUS:0036686061
VL - 542
SP - 795
EP - 801
JO - The Journal of Physiology
JF - The Journal of Physiology
SN - 0022-3751
IS - 3
ER -