TY - JOUR
T1 - A simple rodent assay for the in vivo identification of agents with potential to reduce levodopa-induced dyskinesia in Parkinson's disease
AU - Johnston, Tom H.
AU - Lee, Joohyung
AU - Gomez-Ramirez, Jordi
AU - Fox, Susan H.
AU - Brotchie, Jonathan M.
PY - 2005/2
Y1 - 2005/2
N2 - l-DOPA-induced dyskinesia (LID) remains a major complication of the treatment of Parkinson's disease (PD). Whilst the MPTP-lesioned primate provides an excellent animal model in which to develop new therapies, however, it is logistically difficult to employ widely. Thus, a simple rodent assay to screen multiple compounds as candidates for further study of their potential in LID would be a valuable addition to the drug development process. Here, we investigate how agents with demonstrated ability to reduce LID in man and monkey can regulate l-DOPA-induced behaviours in the reserpine-treated rat. Administration of l-DOPA (125 mg/kg) to reserpine-treated rats elicited high levels of both horizontal and vertical movement. Drugs that have previously been found to reduce LID in parkinsonian primates and PD patients without compromising the anti-parkinsonian efficacy of l-DOPA selectively and dose-dependently reduce vertical components of activity when co-administered with l-DOPA in the reserpine-treated rat. For instance, amantadine (1 mg/kg) and idazoxan (3 mg/kg) reduced vertical activity by 59% and 83%, respectively, while neither drug had significant effects on horizontal activity. In contrast, haloperidol (1 mg/kg), an agent lacking the ability to selectively reduce LID without compromising the anti-parkinsonian actions of l-DOPA, reduced both horizontal and vertical activity, by 98% and 99%, respectively. We also assessed the actions of an NMDA antagonist, a class of compound proposed to have potential as anti-dyskinetic agents. The effects of MK-801 were dose-dependent (0.01-0.5 mg/kg), at some doses (e.g., 0.05 mg/kg), providing selective reduction of vertical activity (90%), at others (e.g., 0.5 mg/kg), non-selective reduction of vertical and horizontal (99% and 77%, respectively). These observations highlight the association between potential anti-dyskinetic action and a selective reduction in l-DOPA-induced vertical activity in the reserpine-treated rat.
AB - l-DOPA-induced dyskinesia (LID) remains a major complication of the treatment of Parkinson's disease (PD). Whilst the MPTP-lesioned primate provides an excellent animal model in which to develop new therapies, however, it is logistically difficult to employ widely. Thus, a simple rodent assay to screen multiple compounds as candidates for further study of their potential in LID would be a valuable addition to the drug development process. Here, we investigate how agents with demonstrated ability to reduce LID in man and monkey can regulate l-DOPA-induced behaviours in the reserpine-treated rat. Administration of l-DOPA (125 mg/kg) to reserpine-treated rats elicited high levels of both horizontal and vertical movement. Drugs that have previously been found to reduce LID in parkinsonian primates and PD patients without compromising the anti-parkinsonian efficacy of l-DOPA selectively and dose-dependently reduce vertical components of activity when co-administered with l-DOPA in the reserpine-treated rat. For instance, amantadine (1 mg/kg) and idazoxan (3 mg/kg) reduced vertical activity by 59% and 83%, respectively, while neither drug had significant effects on horizontal activity. In contrast, haloperidol (1 mg/kg), an agent lacking the ability to selectively reduce LID without compromising the anti-parkinsonian actions of l-DOPA, reduced both horizontal and vertical activity, by 98% and 99%, respectively. We also assessed the actions of an NMDA antagonist, a class of compound proposed to have potential as anti-dyskinetic agents. The effects of MK-801 were dose-dependent (0.01-0.5 mg/kg), at some doses (e.g., 0.05 mg/kg), providing selective reduction of vertical activity (90%), at others (e.g., 0.5 mg/kg), non-selective reduction of vertical and horizontal (99% and 77%, respectively). These observations highlight the association between potential anti-dyskinetic action and a selective reduction in l-DOPA-induced vertical activity in the reserpine-treated rat.
KW - Dyskinesia
KW - l-DOPA
KW - Parkinson's disease
KW - Rat
KW - Therapeutics
UR - http://www.scopus.com/inward/record.url?scp=11844254837&partnerID=8YFLogxK
U2 - 10.1016/j.expneurol.2004.10.002
DO - 10.1016/j.expneurol.2004.10.002
M3 - Article
C2 - 15649479
AN - SCOPUS:11844254837
VL - 191
SP - 243
EP - 250
JO - Experimental Neurology
JF - Experimental Neurology
SN - 0014-4886
IS - 2
ER -