Abstract
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems e.g., for classification, segmentation and object detection. The vulnerability of DNNs against such attacks can prove a major roadblock towards their real-world deployment. Transferability of adversarial examples demand generalizable defenses that can provide cross-task protection. Adversarial training that enhances robustness by modifying target model's parameters lacks such generalizability. On the other hand, different input processing based defenses fall short in the face of continuously evolving attacks. In this paper, we take the first step to combine the benefits of both approaches and propose a self-supervised adversarial training mechanism in the input space. By design, our defense is a generalizable approach and provides significant robustness against the\textbf{unseen} adversarial attacks (\eg by reducing the success rate of translation-invariant\textbf{ensemble} attack from 82.6\% to 31.9\% in comparison to previous state-of-the-art). It can be deployed as a plug-and-play solution to protect a variety of vision systems, as we demonstrate for the case of classification, segmentation and detection.
Original language | English |
---|---|
Title of host publication | Proceedings - 33th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2020 |
Editors | Ce Liu, Greg Mori, Kate Saenko, Silvio Savarese |
Place of Publication | Piscataway NJ USA |
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
Pages | 259-268 |
Number of pages | 10 |
ISBN (Electronic) | 9781728171685 |
ISBN (Print) | 9781728171692 |
DOIs | |
Publication status | Published - 2020 |
Externally published | Yes |
Event | IEEE Conference on Computer Vision and Pattern Recognition 2020 - Virtual, China Duration: 14 Jun 2020 → 19 Jun 2020 http://cvpr2020.thecvf.com (Website ) https://openaccess.thecvf.com/CVPR2020 (Proceedings) https://ieeexplore.ieee.org/xpl/conhome/9142308/proceeding (Proceedings) |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
ISSN (Print) | 1063-6919 |
ISSN (Electronic) | 2575-7075 |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition 2020 |
---|---|
Abbreviated title | CVPR 2020 |
Country | China |
City | Virtual |
Period | 14/06/20 → 19/06/20 |
Internet address |
|