A robust intelligent framework for multiple response statistical optimization problems based on artificial neural network and Taguchi method

Ali Salmasnia, Mahdi Bastan, Asghar Moeini

Research output: Contribution to journalArticleResearchpeer-review

15 Citations (Scopus)


An important problem encountered in product or process design is the setting of process variables to meet a required specification of quality characteristics (response variables), called a multiple response optimization (MRO) problem. Common optimization approaches often begin with estimating the relationship between the response variable with the process variables. Among these methods, response surface methodology (RSM), due to simplicity, has attracted most attention in recent years. However, in many manufacturing cases, on one hand, the relationship between the response variables with respect to the process variables is far too complex to be efficiently estimated; on the other hand, solving such an optimization problem with accurate techniques is associated with problem. Alternative approach presented in this paper is to use artificial neural network to estimate response functions and meet heuristic algorithms in process optimization. In addition, the proposed approach uses the Taguchi robust parameter design to overcome the common limitation of the existing multiple response approaches, which typically ignore the dispersion effect of the responses. The paper presents a case study to illustrate the effectiveness of the proposed intelligent framework for tackling multiple response optimization problems.

Original languageEnglish
Article number494818
JournalInternational Journal of Quality, Statistics, and Reliability
Publication statusPublished - 2012
Externally publishedYes

Cite this