A prodrug approach toward cancer-related carbonic anhydrase inhibition

Cindy J Carroux, Gregory M Rankin, Janina Moeker, Laurent F Bornaghi, Kasiram Katneni, Julia Morizzi, Susan Ann Charman, D Vullo, Claudiu Trandafir Supuran, Sally-Ann Poulsen

Research output: Contribution to journalArticleResearchpeer-review

46 Citations (Scopus)


The selective inhibition of cancer-associated human carbonic anhydrase (CA) enzymes, specifically CA IX and XII, has been validated as a mechanistically novel approach toward personalized cancer management. Herein we report the design and synthesis of a panel of 24 novel glycoconjugate primary sulfonamides that bind to the extracellular catalytic domain of CA IX and XII. These compounds were synthesized from variably acylated glycopyranosyl azides and either 3- or 4-ethynyl benzene sulfonamide using Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC). The CA enzyme inhibition profile for all compounds was determined, while in vitro metabolic stability, plasma stability, and plasma protein binding for a representative set of compounds was measured. Our findings demonstrate the influence of the differing acyl groups on these key biopharmaceutical properties, confirming that acyl group protected carbohydrate-based sulfonamides have potential as prodrugs for selectively targeting the extracellular cancer-associated CA enzymes.
Original languageEnglish
Pages (from-to)9623 - 9634
Number of pages12
JournalJournal of Medicinal Chemistry
Issue number23
Publication statusPublished - 2013

Cite this