Projects per year
Abstract
Persistent ventricular remodeling following myocardial ischemia/reperfusion (MI/R) injury results in functional decompensation and eventual progression to heart failure. VCP979, a novel small-molecule compound developed in‑house, possesses anti‑inflammatory and anti‑fibrotic activities. In the present study, no significant pathological effect was observed following the administration of VCP979 on multiple organs in mice and no difference of aspartate transaminase/alanine aminotransferase/lactate dehydrogenase levels was found in murine serum. Treatment with VCP979 ameliorated cardiac dysfunction, pathological myocardial fibrosis and hypertrophy in murine MI/R injury models. The administration of VCP979 also inhibited the infiltration of inflammatory cells and the pro‑inflammatory cytokine expression in hearts post MI/R injury. Further results revealed that the addition of VCP979 prevented the primary neonatal cardiac fibroblasts (NCFs) from Angiotensin II (Ang II)‑induced collagen synthesis and neonatal cardiac myocytes (NCMs) hypertrophy. In addition, VCP979 attenuated the activation of p38‑mitogen‑activated protein kinase in both Ang II‑induced NCFs and hearts subjected to MI/R injury. These findings indicated that the novel small-molecule compound VCP979 can improve ventricular remodeling in murine hearts against MI/R injury, suggesting its potential therapeutic function in patients subjected to MI/R injury.
Original language | English |
---|---|
Pages (from-to) | 353-364 |
Number of pages | 12 |
Journal | International Journal of Molecular Medicine |
Volume | 45 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2020 |
Keywords
- Inflammation
- MI/R injury
- P38-MAPK
- VCP979
- Ventricular remodeling
Projects
- 2 Finished
-
Novel approaches to the prevention and treatment of chronic heart disease and its co-morbid complications
Reid, C., Kelly, D., Krum, H., Liew, D. & Liew, D.
National Health and Medical Research Council (NHMRC) (Australia)
1/01/16 → 31/12/20
Project: Research
-
Development of Novel Anti-Inflammatory Agents
Krum, H., Scammells, P. & Wang, B.
National Health and Medical Research Council (NHMRC) (Australia)
1/12/08 → 31/08/11
Project: Research