A novel device for investigating structure-function relationships and mechanoadaptation of biological tissues

Manuela A. Boos, Frances A. Ryan, Felix Linnenschmidt, Manula S.B. Rathnayake, Cameron J. Nowell, Shireen R. Lamandé, Kathryn S. Stok

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

Exploring the structure-function relationships of cartilage on a microstructural level is crucial for tissue engineering approaches aiming to restore function. Therefore, a combination of mechanical testing with cell and tissue-level imaging would allow for longitudinal studying loading mechanisms, biological responses and mechanoadaptation of tissues at a microstructural level. This paper describes the design and validation of FELIX, a custom-built device for non-destructive image-guided micromechanical evaluation of biological tissues and tissue-engineered constructs. It combines multiphoton microscopy with non-destructive mechanical testing of native soft tissues. Ten silicone samples of the same size were mechanically tested with FELIX by different users to assess the repeatability and reproducibility. The results indicate that FELIX can successfully substitute mechanical testing protocols with a commercial device without compromising precision. Furthermore, FELIX demonstrated consistent results across repeated measurements, with very small deviations. Therefore, FELIX can be used to accurately measure biomechanical properties by different users for separate studies. Additionally, cell nuclei and collagen of porcine articular cartilage were successfully imaged under compression. Cell viability remained high in chondrocytes cultured in agarose over 21 days. Furthermore, there were no signs of contamination indicating a cell friendly, sterile environment for longitudinal studies. In conclusion, this work demonstrates that FELIX can consistently quantify mechanical measures without compromising precision. Furthermore, it is biocompatible allowing for longitudinal measurements.

Original languageEnglish
Article number105868
Number of pages8
JournalJournal of the Mechanical Behavior of Biomedical Materials
Volume142
DOIs
Publication statusPublished - Jun 2023

Keywords

  • Cartilage
  • Imaging
  • Mechanical testing
  • Multiphoton microscopy

Cite this