A new set of scaling relationships for DEM-CFD simulations of fluid–solid coupling problems in saturated and cohesiveless granular soils

Z. Q. Zhou, P. G. Ranjith, W. M. Yang, S. S. Shi, C. C. Wei, Z. H. Li

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)

Abstract

The discrete element method (DEM) cannot effectively account for macroscale problems because of its high computational cost and time-consuming nature, especially for fluid–solid coupling problems. Therefore, a spatially scaled-down model, which should be established based on a set of scaling laws, is commonly employed to study the behaviors of the macroscale prototype. In the present study, various basic scaling relationships proposed by previous researchers for a scaled-down model are summarized first, as well as their limitations when they are used for DEM-CFD simulation of fluid–solid coupling problems in saturated and cohesiveless granular soils. Then, a new set of scaling relationships is proposed using a governing equation approach. Finally, a DEM-CFD model is established as an example analysis to study the feasibility and accuracy of the new scaling relationship present in this study for simulating fluid–solid coupling problems in saturated and cohesiveless granular soils. The results are analyzed in comparison with other scaling relationships, and the results indicate that the new set of scaling relationships is more reasonable and accurate than others.

Original languageEnglish
Pages (from-to)657–669
Number of pages13
JournalComputational Particle Mechanics
Volume6
Issue number4
DOIs
Publication statusPublished - Oct 2019

Keywords

  • DEM-CFD simulation
  • Fluid–solid coupling analysis
  • Granular soils
  • Scaling relationships
  • Similarity criteria

Cite this