A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast

Maria A. Theodoraki, Nadinath B. Nillegoda, Jagdeep Saini, Avrom J. Caplan

Research output: Contribution to journalArticleResearchpeer-review

38 Citations (Scopus)


Quality control ubiquitin ligases promote degradation of misfolded proteins by the proteasome. If the capacity of the ubiquitin/proteasome system is exceeded, then misfolded proteins accumulate in aggregates that are cleared by the autophagic system. To identify components of the ubiquitin/proteasome system that protect against aggregation, we analyzed a GFP-tagged protein kinase, Ste11ΔNK444R-GFP, in yeast strains deleted for 14 different ubiquitin ligases. We show that deletion of almost all of these ligases affected the proteostatic balance in untreated cells such that Ste11ΔN K444R-GFP aggregation was changed significantly compared with the levels found in wild type cells. By contrast, aggregation was increased significantly in only six E3 deletion strains when Ste11ΔN K444R-GFP folding was impaired due to inhibition of the molecular chaperone Hsp90 with geldanamycin. The increase in aggregation of Ste11ΔNK444R-GFP due to deletion of UBR1and UFD4 was partially suppressed by deletion of UBR2 due to up-regulation of Rpn4, which controls proteasome activity. Deletion of UBR1 in combination with LTN1, UFD4, or DOA10 led to a marked hypersensitivity to azetidine 2-carboxylic acid, suggesting some redundancy in the networks of quality control ubiquitin ligases. Finally, we show that Ubr1 promotes clearance of protein aggregates when the autophagic system is inactivated. These results provide insight into the mechanics by which ubiquitin ligases cooperate and provide feedback regulation in the clearance of misfolded proteins.

Original languageEnglish
Pages (from-to)23911-23922
Number of pages12
JournalThe Journal of Biological Chemistry
Issue number28
Publication statusPublished - 6 Jul 2012
Externally publishedYes

Cite this