A Markov mixture model for magazine exposure

Research output: Contribution to journalArticleResearchpeer-review

17 Citations (Scopus)


A magazine-exposure model that mixes Klotz’s (1973) dependent Bernoulli-trials model for nonsubscribers with a degenerate distribution for subscribers is proposed. Let Xi = 1 if a person reads an issue of a particular magazine and 0 otherwise. Klotz’s parameterization is Pr(Xi = 1) = p and Pr(Xi = 1 ∣Xi–1 = 1) = λ for i = 1, …, k. Using the Markov assumption he obtains the joint distribution of (Equation presented), and T = X1 + Xk, of which we are interested in the marginal distribution of S, the total number of issues a person reads. It is expected that p will be low for nonsubscribers but high for subscribers, so this heterogeneity is modeled by mixing Klotz’s Markov model with a point mass of magnitude π at the point S = k. Maximum likelihood estimates of p, λ, and π are used to fit the Markov mixture model to 40 magazines from a large print-media survey. The proposed model is shown to give a much better fit to these data than the beta-binomial model, the most popular nonproprietary magazine model, and a generalization of the beta-binomial model.

Original languageEnglish
Pages (from-to)922-926
Number of pages5
JournalJournal of the American Statistical Association
Issue number408
Publication statusPublished - 1 Jan 1989
Externally publishedYes


  • Beta-binomial model
  • Magazine-exposure distribution
  • Markov chain
  • Modified beta-binomial model

Cite this