A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structuress

Denise Wootten, Christopher A Reynolds, Cassandra Koole, Kevin J Smith, Juan C Mobarec, John Simms, Tezz Quon, Thomas Coudrat, Sebastian G B Furness, Laurence J Miller, Arthur Christopoulos, Patrick M Sexton

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190 , N3.43240 , Q7.49394 , and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190 , N3.43240 , and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364 A, N3.43240 Q, Q7.49493N, and N3.43240 Q/Q7.49 Q/Q7.49493N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394 , but not R2.60190 /E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.

Original languageEnglish
Pages (from-to)335-347
Number of pages13
JournalMolecular Pharmacology
Volume89
Issue number3
DOIs
Publication statusPublished - 1 Mar 2016

Cite this

@article{237e76b8b72f41c482e88e4914025971,
title = "A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structuress",
abstract = "The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190 , N3.43240 , Q7.49394 , and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190 , N3.43240 , and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364 A, N3.43240 Q, Q7.49493N, and N3.43240 Q/Q7.49 Q/Q7.49493N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394 , but not R2.60190 /E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.",
author = "Denise Wootten and Reynolds, {Christopher A} and Cassandra Koole and Smith, {Kevin J} and Mobarec, {Juan C} and John Simms and Tezz Quon and Thomas Coudrat and Furness, {Sebastian G B} and Miller, {Laurence J} and Arthur Christopoulos and Sexton, {Patrick M}",
year = "2016",
month = "3",
day = "1",
doi = "10.1124/mol.115.101246",
language = "English",
volume = "89",
pages = "335--347",
journal = "Molecular Pharmacology",
issn = "1521-0111",
publisher = "ACS Books",
number = "3",

}

A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism : lessons from class B crystal structuress. / Wootten, Denise; Reynolds, Christopher A; Koole, Cassandra; Smith, Kevin J; Mobarec, Juan C; Simms, John; Quon, Tezz; Coudrat, Thomas; Furness, Sebastian G B; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M.

In: Molecular Pharmacology, Vol. 89, No. 3, 01.03.2016, p. 335-347.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism

T2 - lessons from class B crystal structuress

AU - Wootten, Denise

AU - Reynolds, Christopher A

AU - Koole, Cassandra

AU - Smith, Kevin J

AU - Mobarec, Juan C

AU - Simms, John

AU - Quon, Tezz

AU - Coudrat, Thomas

AU - Furness, Sebastian G B

AU - Miller, Laurence J

AU - Christopoulos, Arthur

AU - Sexton, Patrick M

PY - 2016/3/1

Y1 - 2016/3/1

N2 - The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190 , N3.43240 , Q7.49394 , and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190 , N3.43240 , and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364 A, N3.43240 Q, Q7.49493N, and N3.43240 Q/Q7.49 Q/Q7.49493N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394 , but not R2.60190 /E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.

AB - The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190 , N3.43240 , Q7.49394 , and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190 , N3.43240 , and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364 A, N3.43240 Q, Q7.49493N, and N3.43240 Q/Q7.49 Q/Q7.49493N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394 , but not R2.60190 /E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.

UR - http://www.scopus.com/inward/record.url?scp=84962267960&partnerID=8YFLogxK

UR - http://molpharm.aspetjournals.org/content/89/3/335.full.pdf+html

U2 - 10.1124/mol.115.101246

DO - 10.1124/mol.115.101246

M3 - Article

VL - 89

SP - 335

EP - 347

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 1521-0111

IS - 3

ER -