A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells

Theodore Vo, Joël Tabak, Richard Bertram, Martin Wechselberger

Research output: Contribution to journalArticleResearchpeer-review

17 Citations (Scopus)

Abstract

The electrical activity of endocrine pituitary cells is mediated by a plethora of ionic currents and establishing the role of a single channel type is difficult. Experimental observations have shown however that fast-activating voltage- and calcium-dependent potassium (BK) current tends to promote bursting in pituitary cells. This burst promoting effect requires fast activation of the BK current, otherwise it is inhibitory to bursting. In this work, we analyze a pituitary cell model in order to answer the question of why the BK activation must be fast to promote bursting. We also examine how the interplay between the activation rate and conductance of the BK current shapes the bursting activity. We use the multiple timescale structure of the model to our advantage and employ geometric singular perturbation theory to demonstrate the origin of the bursting behaviour. In particular, we show that the bursting can arise from either canard dynamics or slow passage through a dynamic Hopf bifurcation. We then compare our theoretical predictions with experimental data using the dynamic clamp technique and find that the data is consistent with a burst mechanism due to a slow passage through a Hopf.

Original languageEnglish
Pages (from-to)259-278
Number of pages20
JournalJournal of Computational Neuroscience
Volume36
Issue number2
DOIs
Publication statusPublished - Apr 2014
Externally publishedYes

Keywords

  • BK channel
  • Bursting
  • Dynamic clamp
  • Geometric singular perturbation theory
  • Mixed mode oscillations

Cite this