TY - JOUR
T1 - A controlled study of the effects of ferric carboxymaltose on bone and haematinic biomarkers in chronic kidney disease and pregnancy
AU - Huang, Louis L.
AU - Lee, Darren
AU - Troster, Stefanie M.
AU - Kent, Annette
AU - Roberts, Matthew A.
AU - Macdougall, Iain C.
AU - McMahon, Lawrence P.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Background: Intravenous (IV) iron can modulate fibroblast growth factor 23 (FGF23) concentrations and cause transient but significant hypophosphataemia. However, it is unknown what other markers might be involved, especially in different patient groups. This study aimed to determine changes in bone and haematinic biomarkers following IV ferric carboxymaltose (FCM) and to identify risk factors for hypophosphataemia in pregnant subjects and those with chronic kidney disease (CKD). Methods: Changes in bone [serum FGF23, fractional excretion of phosphate urinary fractional excretion of phosphate (FEPi), serum phosphate and serum vitamin D derivatives] and haematinic [plasma hepcidin, serum ferritin and transferrin saturation (TSAT)] biomarkers after 1 g of IV FCM were followed in iron-deficient pregnant and CKD patients and compared with controls (estimated glomerular filtration rate > 60 mL/min/1.73 m2). Data were collected at baseline and up to 42 days after infusion. Risk factors for post-FCM hypophosphataemia were also assessed. Results: Sixty-five subjects completed the study (control, n = 20; pregnant, n = 20; CKD, n = 25). A uniform but variable increase across groups was seen in intact FGF23 (peak Day 2), whereas c-terminal FGF23 varied markedly. Trough serum phosphate timed with the peak FEPi at Day 7, recovering by Day 21 in the pregnant group and Day 42 in other groups. Independent predictors of a low phosphate nadir included baseline phosphate, FEPi and weight-adjusted FCM dose. All groups showed an early and marked increase in plasma hepcidin (peak Day 2), serum ferritin and TSAT (peak Day 7 for both). Conclusions: Changes in bone and haematinic biomarkers differ between patient groups following IV FCM. For patients with lower serum phosphate concentrations, limiting the dose and measuring levels 7 days after administration may mitigate clinically significant hypophosphataemia.
AB - Background: Intravenous (IV) iron can modulate fibroblast growth factor 23 (FGF23) concentrations and cause transient but significant hypophosphataemia. However, it is unknown what other markers might be involved, especially in different patient groups. This study aimed to determine changes in bone and haematinic biomarkers following IV ferric carboxymaltose (FCM) and to identify risk factors for hypophosphataemia in pregnant subjects and those with chronic kidney disease (CKD). Methods: Changes in bone [serum FGF23, fractional excretion of phosphate urinary fractional excretion of phosphate (FEPi), serum phosphate and serum vitamin D derivatives] and haematinic [plasma hepcidin, serum ferritin and transferrin saturation (TSAT)] biomarkers after 1 g of IV FCM were followed in iron-deficient pregnant and CKD patients and compared with controls (estimated glomerular filtration rate > 60 mL/min/1.73 m2). Data were collected at baseline and up to 42 days after infusion. Risk factors for post-FCM hypophosphataemia were also assessed. Results: Sixty-five subjects completed the study (control, n = 20; pregnant, n = 20; CKD, n = 25). A uniform but variable increase across groups was seen in intact FGF23 (peak Day 2), whereas c-terminal FGF23 varied markedly. Trough serum phosphate timed with the peak FEPi at Day 7, recovering by Day 21 in the pregnant group and Day 42 in other groups. Independent predictors of a low phosphate nadir included baseline phosphate, FEPi and weight-adjusted FCM dose. All groups showed an early and marked increase in plasma hepcidin (peak Day 2), serum ferritin and TSAT (peak Day 7 for both). Conclusions: Changes in bone and haematinic biomarkers differ between patient groups following IV FCM. For patients with lower serum phosphate concentrations, limiting the dose and measuring levels 7 days after administration may mitigate clinically significant hypophosphataemia.
KW - ferric carboxymaltose
KW - FGF23
KW - hepcidin
KW - hypophosphataemia
KW - iron deficiency
UR - http://www.scopus.com/inward/record.url?scp=85061480417&partnerID=8YFLogxK
U2 - 10.1093/ndt/gfx310
DO - 10.1093/ndt/gfx310
M3 - Article
C2 - 29165637
SN - 0931-0509
VL - 33
SP - 1628
EP - 1635
JO - Nephrology Dialysis Transplantation
JF - Nephrology Dialysis Transplantation
IS - 9
ER -