A compliant ionic adhesive electrode with ultralow bioelectronic impedance

Liang Pan, Pingqiang Cai, Le Mei, Yuan Cheng, Yi Zeng, Ming Wang, Ting Wang, Ying Jiang, Baohua Ji, Dechang Li, Xiaodong Chen

Research output: Contribution to journalArticleResearchpeer-review

110 Citations (Scopus)

Abstract

Simultaneous implementation of high signal-to-noise ratio (SNR) but low crosstalk is of great importance for weak surface electromyography (sEMG) signals when precisely driving a prosthesis to perform sophisticated activities. However, due to gaps with the curved skin during muscle contraction, many electrodes have poor compliance with skin and suffer from high bioelectrical impedance. This causes serious noise and error in the signals, especially the signals from low-level muscle contractions. Here, the design of a compliant electrode based on an adhesive hydrogel, alginate–polyacrylamide (Alg-PAAm) is reported, which eliminates those large gaps through the strong electrostatic interaction and abundant hydrogen bond with the skin. The obtained compliant electrode, having an ultralow bioelectrical impedance of ≈20 kΩ, can monitor even 2.1% maximal voluntary contraction (MVC) of muscle. Furthermore, benefiting from the high SNR of '5:1 at low-level MVC, the crosstalk from irrelevant muscle is minimized through reducing the electrode size. Finally, a prosthesis is successfully demonstrated to precisely grasp a needle based on a 9 mm2 Alg-PAAm compliant electrode. The strategy to design such compliant electrodes provides the potential for improving the quality of dynamically weak sEMG signals to precisely control prosthesis in performing purposefully dexterous activity.

Original languageEnglish
Article number2003723
Number of pages9
JournalAdvanced Materials
Volume32
Issue number38
DOIs
Publication statusPublished - 24 Sept 2020
Externally publishedYes

Keywords

  • bioelectronic impedance
  • compliant electrodes
  • low noise
  • prosthetic control
  • surface electromyography

Cite this