A central role for the Hsp90·Cdc37 molecular chaperone module in interleukin-1 receptor-associated-kinase-dependent signaling by Toll-like receptors

Dominic De Nardo, Paul J Masendycz, Sokwei Ho, Maddalena Cross, Andrew J. Fleetwood, Eric Charles Reynolds, John A. Hamilton, Glen M. Scholz

Research output: Contribution to journalArticleResearchpeer-review

45 Citations (Scopus)


Toll-like receptors (TLRs) serve crucial roles in innate immunity by mediating the activation of macrophages by microbial pathogens. The protein kinase interleukin-1 receptor associated kinase (IRAK-1) is a key component of TLR signaling pathways via its interaction with TRAF6, which subsequently leads to the activation of MAP kinases and various transcription factors. IRAK-1 is degraded following TLR activation, and this has been proposed to contribute to tolerance in macrophages by limiting further TLR-mediated signaling. Using a mass spectrometric-based approach, we have identified a cohort of chaperones and co-chaperones including Hsp90 and Cdc37, which bind to IRAK-1 but not IRAK-4 in 293T cells. Pharmacologic inhibition of Hsp90 led to a rapid decline in the expression level of IRAK-1, whereas overexpression of Cdc37 enhanced the activation and oligomerization of IRAK-1 in 293T cells. Significantly, the inhibition of Hsp90 in macrophages resulted in the destabilization and degradation of IRAK-1 but not IRAK-4. Concomitant with the loss of IRAK-1 expression was a reduction in the activation of p38 MAP kinase and Erk1/2 following stimulation with the bacterially derived TLR ligands, lipopolysaccharide and CpG DNA. Moreover, TLR ligand-induced expression of proinflammatory cytokines was also reduced. Thus we conclude that the level of on-going support provided to IRAK-1 by the Hsp90-Cdc37 chaperone module directly influences the magnitude of TLR-mediated macrophage activation. In addition, because further TLR signaling depends on the synthesis of new IRAK-1, the Hsp90-Cdc37 chaperone module could also contribute to tolerance in macrophages by controlling the rate at which nascent IRAK-1 is folded into a functional conformation.

Original languageEnglish
Pages (from-to)9813-9822
Number of pages10
JournalJournal of Biological Chemistry
Issue number11
Publication statusPublished - 18 Mar 2005
Externally publishedYes

Cite this