TY - JOUR
T1 - A breathtaking phenotype: Unexpected roles of the DNA base damage response protein ASCIZ as a key regulator of early lung development
AU - Heierhorst, Jorg
AU - Smyth, Ian
AU - Jurado, Sabine
PY - 2011
Y1 - 2011
N2 - The ATM substrate Chk2-interacting Zn(2+)-finger protein (ASCIZ, also known as ATMIN and ZNF822) has previously been reported to be important for the repair of methylating and oxidative DNA damage, and it has also been proposed to regulate the stability and DNA damage-independent activation of the ATM kinase. While the role of the protein in the regulation of ATM remains controversial, two recent ASCIZ mouse knockout papers confirm its role in the DNA base damage response, including oxidative stress resistance in vivo. Similar to other DNA base damage repair proteins, ASCIZ is essential for embryonic development, with lethality of Asciz-null embryos around day E16.5 post conception. Unexpectedly, absence of ASCIZ also leads to severe organ development defects, most notably, complete absence of lungs similar to mutants in Wnt2-2b/ss-catenin and FGF10/FGFR2b signalling pathways. Together with evidence that ASCIZ can activate transcription in vitro, the phenotype indicates that ASCIZ has dual functions as an efficiency factor for DNA base damage repair as well as a key transcriptional regulator of early lung development.
AB - The ATM substrate Chk2-interacting Zn(2+)-finger protein (ASCIZ, also known as ATMIN and ZNF822) has previously been reported to be important for the repair of methylating and oxidative DNA damage, and it has also been proposed to regulate the stability and DNA damage-independent activation of the ATM kinase. While the role of the protein in the regulation of ATM remains controversial, two recent ASCIZ mouse knockout papers confirm its role in the DNA base damage response, including oxidative stress resistance in vivo. Similar to other DNA base damage repair proteins, ASCIZ is essential for embryonic development, with lethality of Asciz-null embryos around day E16.5 post conception. Unexpectedly, absence of ASCIZ also leads to severe organ development defects, most notably, complete absence of lungs similar to mutants in Wnt2-2b/ss-catenin and FGF10/FGFR2b signalling pathways. Together with evidence that ASCIZ can activate transcription in vitro, the phenotype indicates that ASCIZ has dual functions as an efficiency factor for DNA base damage repair as well as a key transcriptional regulator of early lung development.
UR - http://www.landesbioscience.com/journals/cc/HeierhorstCC10-8.pdf
U2 - 10.4161/cc.10.8.15336
DO - 10.4161/cc.10.8.15336
M3 - Article
SN - 1538-4101
VL - 10
SP - 1222
EP - 1224
JO - Cell Cycle
JF - Cell Cycle
IS - 8
ER -