Abstract
It is increasingly recognized that Alzheimer’s disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β1−42 (Aβ1−42) may be an earlier indicator of Alzheimer’s disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual’s CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF Aβ1−42 levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA, Aβ1−42, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF Aβ1−42 levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF Aβ1−42 levels and that the resulting model also validates reasonably across PET Aβ1−42 status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ1−42 status, the earliest risk indicator for AD, with high accuracy.
Original language | English |
---|---|
Article number | 4163 |
Number of pages | 12 |
Journal | Scientific Reports |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 11 Mar 2019 |
Externally published | Yes |
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Scientific Reports, Vol. 9, No. 1, 4163, 11.03.2019.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - A blood-based signature of cerebrospinal fluid Aβ 1–42 status
AU - Goudey, Benjamin
AU - Fung, Bowen J.
AU - Schieber, Christine
AU - Weiner, Michael W.
AU - Aisen, Paul
AU - Petersen, Ronald
AU - Jack, Clifford R.
AU - Jagust, William
AU - Trojanowki, John Q.
AU - Toga, Arthur W.
AU - Beckett, Laurel
AU - Green, Robert C.
AU - Saykin, Andrew
AU - Morris, John C.
AU - Shaw, Leslie
AU - Kaye, Jeffrey
AU - Quinn, Joseph
AU - Silbert, Lisa
AU - Lind, Betty
AU - Carter, Raina
AU - Dolen, Sara
AU - Schneider, Lon S.
AU - Pawluczyk, Sonia
AU - Beccera, Mauricio
AU - Teodoro, Liberty
AU - Spann, Bryan M.
AU - Brewer, James
AU - Vanderswag, Helen
AU - Fleisher, Adam
AU - Heidebrink, Judith L.
AU - Lord, Joanne L.
AU - Mason, Sara S.
AU - Albers, Colleen S.
AU - Knopman, David
AU - Johnson, Kris
AU - Doody, Rachelle S.
AU - Villanueva-Meyer, Javier
AU - Chowdhury, Munir
AU - Rountree, Susan
AU - Dang, Mimi
AU - Stern, Yaakov
AU - Honig, Lawrence S.
AU - Bell, Karen L.
AU - Ances, Beau
AU - Carroll, Maria
AU - Creech, Mary L.
AU - Franklin, Erin
AU - Mintun, Mark A.
AU - Schneider, Stacy
AU - Oliver, Angela
AU - Marson, Daniel
AU - Griffth, Randall
AU - Clark, David
AU - Geldmacher, David
AU - Brockington, John
AU - Roberson, Erik
AU - Love, Marissa Natelson
AU - Grossman, Hillel
AU - Mitsis, Effie
AU - Shah, Raj C.
AU - deToledo-Morrell, Leyla
AU - Duara, Ranjan
AU - Varon, Daniel
AU - Greig, Maria T.
AU - Roberts, Peggy
AU - Albert, Marilyn
AU - Onyike, Chiadi
AU - D’Agostino, Daniel
AU - Kielb, Stephanie
AU - Galvin, James E.
AU - Cerbone, Brittany
AU - Michel, Christina A.
AU - Pogorelec, Dana M.
AU - Rusinek, Henry
AU - de Leon, Mony J.
AU - Glodzik, Lidia
AU - De Santi, Susan
AU - Doraiswamy, P. Murali
AU - Petrella, Jeffrey R.
AU - Borges-Neto, Salvador
AU - Wong, Terence Z.
AU - Coleman, Edward
AU - Smith, Charles D.
AU - Jicha, Greg
AU - Hardy, Peter
AU - Sinha, Partha
AU - Oates, Elizabeth
AU - Conrad, Gary
AU - Porsteinsson, Anton P.
AU - Goldstein, Bonnie S.
AU - Martin, Kim
AU - Makino, Kelly M.
AU - Ismail, M. Saleem
AU - Brand, Connie
AU - Mulnard, Ruth A.
AU - Thai, Gaby
AU - Mc-Adams-Ortiz, Catherine
AU - Womack, Kyle
AU - Mathews, Dana
AU - Quiceno, Mary
AU - Levey, Allan I.
AU - Lah, James J.
AU - Cellar, Janet S.
AU - Burns, Jeffrey M.
AU - Swerdlow, Russell H.
AU - Brooks, William M.
AU - Apostolova, Liana
AU - Tingus, Kathleen
AU - Woo, Ellen
AU - Silverman, Daniel H.S.
AU - Lu, Po H.
AU - Bartzokis, George
AU - Graff-Radford, Neill R.
AU - Parftt, Francine
AU - Kendall, Tracy
AU - Johnson, Heather
AU - Farlow, Martin R.
AU - Hake, Ann Marie
AU - Matthews, Brandy R.
AU - Brosch, Jared R.
AU - Herring, Scott
AU - Hunt, Cynthia
AU - van Dyck, Christopher H.
AU - Carson, Richard E.
AU - MacAvoy, Martha G.
AU - Varma, Pradeep
AU - Chertkow, Howard
AU - Bergman, Howard
AU - Hosein, Chris
AU - Black, Sandra
AU - Stefanovic, Bojana
AU - Caldwell, Curtis
AU - Hsiung, Ging Yuek Robin
AU - Feldman, Howard
AU - Mudge, Benita
AU - Assaly, Michele
AU - Finger, Elizabeth
AU - Pasternack, Stephen
AU - Rachisky, Irina
AU - Trost, Dick
AU - Kertesz, Andrew
AU - Bernick, Charles
AU - Munic, Donna
AU - Mesulam, Marek Marsel
AU - Lipowski, Kristine
AU - Weintraub, Sandra
AU - Bonakdarpour, Borna
AU - Kerwin, Diana
AU - Wu, Chuang Kuo
AU - Johnson, Nancy
AU - Sadowsky, Carl
AU - Villena, Teresa
AU - Turner, Raymond Scott
AU - Johnson, Kathleen
AU - Reynolds, Brigid
AU - Sperling, Reisa A.
AU - Johnson, Keith A.
AU - Marshall, Gad
AU - Yesavage, Jerome
AU - Taylor, Joy L.
AU - Lane, Barton
AU - Rosen, Allyson
AU - Tinklenberg, Jared
AU - Sabbagh, Marwan N.
AU - Belden, Christine M.
AU - Jacobson, Sandra A.
AU - Sirrel, Sherye A.
AU - Kowall, Neil
AU - Killiany, Ronald
AU - Budson, Andrew E.
AU - Norbash, Alexander
AU - Johnson, Patricia Lynn
AU - Obisesan, Thomas O.
AU - Wolday, Saba
AU - Allard, Joanne
AU - Lerner, Alan
AU - Ogrocki, Paula
AU - Tatsuoka, Curtis
AU - Fatica, Parianne
AU - Fletcher, Evan
AU - Maillard, Pauline
AU - Olichney, John
AU - DeCarli, Charles
AU - Carmichael, Owen
AU - Kittur, Smita
AU - Borrie, Michael
AU - Lee, T. Y.
AU - Bartha, Rob
AU - Johnson, Sterling
AU - Asthana, Sanjay
AU - Carlsson, Cynthia M.
AU - Potkin, Steven G.
AU - Preda, Adrian
AU - Nguyen, Dana
AU - Tariot, Pierre
AU - Burke, Anna
AU - Trncic, Nadira
AU - Reeder, Stephanie
AU - Bates, Vernice
AU - Capote, Horacio
AU - Rainka, Michelle
AU - Scharre, Douglas W.
AU - Kataki, Maria
AU - Adeli, Anahita
AU - Zimmerman, Earl A.
AU - Celmins, Dzintra
AU - Brown, Alice D.
AU - Pearlson, Godfrey D.
AU - Blank, Karen
AU - Anderson, Karen
AU - Flashman, Laura A.
AU - Seltzer, Marc
AU - Hynes, Mary L.
AU - Santulli, Robert B.
AU - Sink, Kaycee M.
AU - Gordineer, Leslie
AU - Williamson, Je D.
AU - Garg, Pradeep
AU - Watkins, Franklin
AU - Ott, Brian R.
AU - Querfurth, Henry
AU - Tremont, Geffrey
AU - Salloway, Stephen
AU - Malloy, Paul
AU - Correia, Stephen
AU - Rosen, Howard J.
AU - Miller, Bruce L.
AU - Perry, David
AU - Mintzer, Jacobo
AU - Spicer, Kenneth
AU - Bachman, David
AU - Pomara, Nunzio
AU - Hernando, Raymundo
AU - Sarrael, Antero
AU - Relkin, Norman
AU - Chaing, Gloria
AU - Lin, Michael
AU - Ravdin, Lisa
AU - Smith, Amanda
AU - Raj, Balebail Ashok
AU - Fargher, Kristin
AU - Saykin, Andrew
AU - Nho, Kwangsik
AU - Kling, Mitchel
AU - Toledo, John
AU - Shaw, Leslie
AU - Trojanowski, John
AU - Meikle, Peter
AU - the Alzheimer's Disease Metabolomics Consortium
AU - the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
AU - Faux, Noel G.
N1 - Funding Information: Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. This work was supported by IBM. We would like to thank Dr. Matthew Downton, Dr. Annalisa Swan and Dr. Anna Trigos for helpful feedback on the manuscript. Publisher Copyright: © 2019, The Author(s).
PY - 2019/3/11
Y1 - 2019/3/11
N2 - It is increasingly recognized that Alzheimer’s disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β1−42 (Aβ1−42) may be an earlier indicator of Alzheimer’s disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual’s CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF Aβ1−42 levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA, Aβ1−42, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF Aβ1−42 levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF Aβ1−42 levels and that the resulting model also validates reasonably across PET Aβ1−42 status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ1−42 status, the earliest risk indicator for AD, with high accuracy.
AB - It is increasingly recognized that Alzheimer’s disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β1−42 (Aβ1−42) may be an earlier indicator of Alzheimer’s disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual’s CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF Aβ1−42 levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA, Aβ1−42, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF Aβ1−42 levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF Aβ1−42 levels and that the resulting model also validates reasonably across PET Aβ1−42 status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ1−42 status, the earliest risk indicator for AD, with high accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85062726457&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-37149-7
DO - 10.1038/s41598-018-37149-7
M3 - Article
C2 - 30853713
AN - SCOPUS:85062726457
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 4163
ER -