Abstract
Organic semiconductors as hole transport materials (HTMs) often require additives, such as LiTFSI and tert-butylpyridine (TBP), in order to enhance their hole conductivities. However, the combination of lithium salts and TBP leads to significant HTM morphological deformation and poor device stability. Here we have successfully applied tetrabutylammonium (TBA) salts to replace both LiTFSI and TBP. A high power conversion efficiency of 18.4% has been achieved for the devices with TBATFSI, which is higher than the control devices with LiTFSI and TBP (18.1%). We also found that the anions in the TBA salts play important roles in the hole conductivity and uniformity of the HTM layer, as well as the hysteresis of the devices. More importantly, the devices with TBATFSI and TBAPF 6 demonstrated significantly enhanced environmental and thermal stability. This new strategy of using TBA salts is promising for developing stable organic HTM thin films for solar cell applications.
Original language | English |
---|---|
Pages (from-to) | 1677-1682 |
Number of pages | 6 |
Journal | ACS Energy Letters |
Volume | 3 |
Issue number | 7 |
DOIs | |
Publication status | Published - 13 Jul 2018 |
Equipment
-
Centre for Electron Microscopy (MCEM)
Flame Sorrell (Manager) & Peter Miller (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility
-
Melbourne Centre for Nanofabrication
Sean Langelier (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility