3D-EPI blip-up/down acquisition (BUDA) with CAIPI and joint Hankel structured low-rank reconstruction for rapid distortion-free high-resolution T2* mapping

Zhifeng Chen, Congyu Liao, Xiaozhi Cao, Benedikt A. Poser, Zhongbiao Xu, Wei-Ching Lo, Manyi Wen, Jaejin Cho, Qiyuan Tian, Yaohui Wang, Yanqiu Feng, Ling Xia, Wufan Chen, Feng Liu, Berkin Bilgic

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)

Abstract

Purpose: This work aims to develop a novel distortion-free 3D-EPI acquisition and image reconstruction technique for fast and robust, high-resolution, whole-brain imaging as well as quantitative (Formula presented.) mapping. Methods: 3D Blip-up and -down acquisition (3D-BUDA) sequence is designed for both single- and multi-echo 3D gradient recalled echo (GRE)-EPI imaging using multiple shots with blip-up and -down readouts to encode B0 field map information. Complementary k-space coverage is achieved using controlled aliasing in parallel imaging (CAIPI) sampling across the shots. For image reconstruction, an iterative hard-thresholding algorithm is employed to minimize the cost function that combines field map information informed parallel imaging with the structured low-rank constraint for multi-shot 3D-BUDA data. Extending 3D-BUDA to multi-echo imaging permits (Formula presented.) mapping. For this, we propose constructing a joint Hankel matrix along both echo and shot dimensions to improve the reconstruction. Results: Experimental results on in vivo multi-echo data demonstrate that, by performing joint reconstruction along with both echo and shot dimensions, reconstruction accuracy is improved compared to standard 3D-BUDA reconstruction. CAIPI sampling is further shown to enhance image quality. For (Formula presented.) mapping, parameter values from 3D-Joint-CAIPI-BUDA and reference multi-echo GRE are within limits of agreement as quantified by Bland–Altman analysis. Conclusions: The proposed technique enables rapid 3D distortion-free high-resolution imaging and (Formula presented.) mapping. Specifically, 3D-BUDA enables 1-mm isotropic whole-brain imaging in 22 s at 3T and 9 s on a 7T scanner. The combination of multi-echo 3D-BUDA with CAIPI acquisition and joint reconstruction enables distortion-free whole-brain (Formula presented.) mapping in 47 s at 1.1 × 1.1 × 1.0 mm3 resolution.

Original languageEnglish
Pages (from-to)1961-1974
Number of pages14
JournalMagnetic Resonance in Medicine
Volume89
Issue number5
DOIs
Publication statusPublished - May 2023

Keywords

  • 3D-BUDA
  • CAIPI
  • distortion-free EPI
  • joint Hankel low-rank reconstruction
  • T2* mapping

Cite this