This project will develop a new method for robotic navigation in which goals can be specified at a much higher level of abstraction than has previously been possible. This will be achieved using deep learning to make informed predictions about a scene layout, and navigating as an active observer in which the predictions informs actions. The outcome will be robotic agents capable of effective and efficient navigation and operation in previously unseen environments, and the ability to control such agents with more human-like instructions. Such capabilities are desirable, and in some cases essential, for autonomous robots in a variety of important application areas including automated warehousing and high-level control of autonomous vehicles.