If you made any changes in Pure these will be visible here soon.

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects 2016 2017

FFT2: New mathematical models for data handling phase 2

Smith-Miles, K., Munoz Acosta, A., Kandanaarachchi, S. & Katsifolis, J.

1/11/1630/06/17

Project: Research

Research Output 2012 2019

  • 5 Article
  • 2 Conference Paper
5 Citations (Scopus)

A framework for automated anomaly detection in high frequency water-quality data from in situ sensors

Leigh, C., Alsibai, O., Hyndman, R. J., Kandanaarachchi, S., King, O. C., McGree, J. M., Neelamraju, C., Strauss, J., Talagala, P. D., Turner, R. D. R., Mengersen, K. & Peterson, E. E., 10 May 2019, In : Science of the Total Environment. 664, p. 885-898 14 p.

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)

Anomaly detection in streaming nonstationary temporal data

Talagala, P. D., Hyndman, R. J., Smith-Miles, K., Kandanaarachchi, S. & Muñoz, M. A., 2019, (Accepted/In press) In : Journal of Computational and Graphical Statistics. 15 p.

Research output: Contribution to journalArticleResearchpeer-review

Instance space analysis for unsupervised outlier detection

Kandanaarachchi, S., Muñoz, M. A. & Smith-Miles, K., 2019, Proceedings of the 1st Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning co-located with SIAM International Conference on Data Mining (SDM 2019). Ntoutsi, E., Schubert, E., Zimek, A. & Zimmermann, A. (eds.). Germany: Rheinisch-Westfaelische Technische Hochschule Aachen, 9 p. (CEUR Workshop Proceedings; vol. 2436).

Research output: Chapter in Book/Report/Conference proceedingConference PaperOtherpeer-review

Open Access
File

Predicting sediment and nutrient concentrations from high-frequency water-quality data

Leigh, C., Kandanaarachchi, S., McGree, J. M., Hyndman, R. J., Alsibai, O., Mengersen, K. & Peterson, E. E., Aug 2019, In : PLoS ONE. 14, 8, 22 p., e0215503.

Research output: Contribution to journalArticleResearchpeer-review

Open Access
File
1 Citation (Scopus)

Machine learning methods for predicting the outcome of hypervelocity impact events

Ryan, S., Thaler, S. & Kandanaarachchi, S., 1 Mar 2016, In : Expert Systems with Applications. 45, p. 23-39 17 p.

Research output: Contribution to journalArticleResearchpeer-review