Daniel Schmidt

Dr

Accepting PhD Students

20022021
If you made any changes in Pure these will be visible here soon.

Personal profile

Biography

Daniel Schmidt is a Senior Lecturer in Data Science at the Faculty of Information Technology, Monash University, Melbourne, Australia.

Since completing his PhD in information theoretic inference of linear time series models he has spent 10 years working primarily in the area of Bayesian inference, with specific interest in applications to epidemiological problems, particular the area of statistical genomics.

His specific research interests include:

  • Bayesian inference of high dimensional regression models, particularly linear and generalized linear models. He has, along with Dr. Enes Makalic, written a highly efficient toolbox supporting state-of-the-art Bayesian shrinkage priors for high dimensional regression models (available here);
  • Information theoretic statistics, particularly the application of information theory to statistical inference through the Minimum Message/Description Length principles;
  • Statistical genomics, risk prediction and variant discovery, particularly in the areas of cancer genomics.

He is interested in using mammography and machine learning techniques to improve risk prediction and the stratification of women by their future risk of breast cancer, with the aim of assisting the creation of personalised screening programmes.

 
Recent pre-prints:

  •  Adaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors, which describes a new class of shrinkage prior distributions for regression coefficients that can adapt to the sparsity characteristics of the underlying regression coefficients. It also provides simple bounds on behaviour of most existing Bayesian shrinkage priors.
  • A Minimum Message Length Criterion for Robust Linear Regression, which develops a simple, finite sample criterion for model selection in linear models with heavy tailed error distributions using the Minimum Message Length principle. Interestingly, the penalty term can be shown to be related to the signal-to-noise ratio of the fitted model.


External Links:

  • His personal homepage is found at www.dschmidt.org, which contains software and publications/presentations.
  • The BayesReg package for efficient, high dimensional Bayesian penalized regression can be downloaded from here.
  • His google scholar page is here.

 

Monash teaching commitment

Daniel Schmidt has developed, and acted as Chief Examiner and Lecturer, for the following units at the Faculty of Information Technology:

External positions

Senior Research Fellow (Adjunct), Centre for Epidemiology and Biostatistics

1 Mar 2018 → …

Keywords

  • Bayesian Inference
  • Information Theory
  • Minimum Message Length
  • Minimum Description Length
  • Statistical and Data Analysis
  • Shrinkage Estimation
  • Statistical genomics
  • Cancer genomics
  • Mammography

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects 2018 2021

Development of automated measures from mammograms that predict masking and risk of breast cancer

Schmidt, D., Hopper, J. L., Keogh, L. & Frazer, H.

1/07/1818/04/21

Project: Research

Research Output 2002 2019

Ability of known susceptibility SNPs to predict colorectal cancer risk for persons with and without a family history

Jenkins, M. A., Win, A. K., Dowty, J. G., MacInnis, R. J., Makalic, E., Schmidt, D. F., Dite, G. S., Kapuscinski, M., Clendenning, M., Rosty, C., Winship, I. M., Emery, J. D., Saya, S., Macrae, F. A., Ahnen, D. J., Duggan, D., Figueiredo, J. C., Lindor, N. M., Haile, R. W., Potter, J. D. & 6 othersCotterchio, M., Gallinger, S., Newcomb, P. A., Buchanan, D. D., Casey, G. & Hopper, J. L., 17 Jun 2019, (Accepted/In press) In : Familial Cancer.

Research output: Contribution to journalArticleResearchpeer-review

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

Mavaddat, N., Michailidou, K., Dennis, J., Lush, M., Fachal, L., Lee, A., Tyrer, J. P., Chen, T. H., Wang, Q., Bolla, M. K., Yang, X., Adank, M. A., Ahearn, T., Aittomäki, K., Allen, J., Andrulis, I. L., Anton-Culver, H., Antonenkova, N. N., Arndt, V., Aronson, K. J. & 233 othersAuer, P. L., Auvinen, P., Barrdahl, M., Beane Freeman, L. E., Beckmann, M. W., Behrens, S., Benitez, J., Bermisheva, M., Bernstein, L., Blomqvist, C., Bogdanova, N. V., Bojesen, S. E., Bonanni, B., Børresen-Dale, A. L., Brauch, H., Bremer, M., Brenner, H., Brentnall, A., Brock, I. W., NBCS Collaborators, ABCTB Investigators, kConFab/AOCS Investigators, Brooks-Wilson, A., Brucker, S. Y., Brüning, T., Burwinkel, B., Campa, D., Carter, B. D., Castelao, J. E., Chanock, S. J., Chlebowski, R., Christiansen, H., Clarke, C. L., Collée, J. M., Cordina-Duverger, E., Cornelissen, S., Couch, F. J., Cox, A., Cross, S. S., Czene, K., Daly, M. B., Devilee, P., Dörk, T., dos-Santos-Silva, I., Dumont, M., Durcan, L., Dwek, M., Eccles, D. M., Ekici, A. B., Eliassen, A. H., Ellberg, C., Engel, C., Eriksson, M., Evans, D. G., Fasching, P. A., Figueroa, J., Fletcher, O., Flyger, H., Försti, A., Fritschi, L., Gabrielson, M., Gago-Dominguez, M., Gapstur, S. M., García-Sáenz, J. A., Gaudet, M. M., Georgoulias, V., Giles, G. G., Gilyazova, I. R., Glendon, G., Goldberg, M. S., Goldgar, D. E., González-Neira, A., Grenaker Alnæs, G. I., Grip, M., Gronwald, J., Grundy, A., Guénel, P., Haeberle, L., Hahnen, E., Haiman, C. A., Håkansson, N., Hamann, U., Hankinson, S. E., Harkness, E. F., Hart, S. N., He, W., Hein, A., Heyworth, J., Hillemanns, P., Hollestelle, A., Hooning, M. J., Hoover, R. N., Hopper, J. L., Howell, A., Huang, G., Humphreys, K., Hunter, D. J., Jakimovska, M., Jakubowska, A., Janni, W., John, E. M., Johnson, N., Jones, M. E., Jukkola-Vuorinen, A., Jung, A., Kaaks, R., Kaczmarek, K., Kataja, V., Keeman, R., Kerin, M. J., Khusnutdinova, E., Kiiski, J. I., Knight, J. A., Ko, Y. D., Kosma, V. M., Koutros, S., Kristensen, V. N., Krüger, U., Kühl, T., Lambrechts, D., Le Marchand, L., Lee, E., Lejbkowicz, F., Lilyquist, J., Lindblom, A., Lindström, S., Lissowska, J., Lo, W. Y., Loibl, S., Long, J., Lubiński, J., Lux, M. P., MacInnis, R. J., Maishman, T., Makalic, E., Maleva Kostovska, I., Mannermaa, A., Manoukian, S., Margolin, S., Martens, J. W. M., Martinez, M. E., Mavroudis, D., McLean, C., Meindl, A., Menon, U., Middha, P., Miller, N., Moreno, F., Mulligan, A. M., Mulot, C., Muñoz-Garzon, V. M., Neuhausen, S. L., Nevanlinna, H., Neven, P., Newman, W. G., Nielsen, S. F., Nordestgaard, B. G., Norman, A., Offit, K., Olson, J. E., Olsson, H., Orr, N., Pankratz, V. S., Park-Simon, T. W., Perez, J. I. A., Pérez-Barrios, C., Peterlongo, P., Peto, J., Pinchev, M., Plaseska-Karanfilska, D., Polley, E. C., Prentice, R., Presneau, N., Prokofyeva, D., Purrington, K., Pylkäs, K., Rack, B., Radice, P., Rau-Murthy, R., Rennert, G., Rennert, H. S., Rhenius, V., Robson, M., Romero, A., Ruddy, K. J., Ruebner, M., Saloustros, E., Sandler, D. P., Sawyer, E. J., Schmidt, D. F., Schmutzler, R. K., Schneeweiss, A., Schoemaker, M. J., Schumacher, F., Schürmann, P., Schwentner, L., Scott, C., Scott, R. J., Seynaeve, C., Shah, M., Sherman, M. E., Shrubsole, M. J., Shu, X. O., Slager, S., Smeets, A., Sohn, C., Soucy, P., Southey, M. C., Spinelli, J. J., Stegmaier, C., Stone, J., Swerdlow, A. J., Tamimi, R. M., Tapper, W. J., Taylor, J. A., Terry, M. B., Thöne, K., Tollenaar, R. A. E. M., Tomlinson, I., Truong, T., Tzardi, M., Ulmer, H. U., Untch, M., Vachon, C. M., van Veen, E. M., Vijai, J., Weinberg, C. R., Wendt, C., Whittemore, A. S., Wildiers, H., Willett, W., Winqvist, R. & Milne, R. L., 3 Jan 2019, In : American Journal of Human Genetics. 104, 1, p. 21-34 14 p.

Research output: Contribution to journalArticleResearchpeer-review

Open Access
File

Association of dna methylation-based biological age with health risk factors and overall and cause-specific mortality

Dugué, P. A., Bassett, J. K., Joo, J. E., Baglietto, L., Jung, C. H., Wong, E. M., Fiorito, G., Schmidt, D., Makalic, E., Li, S., Moreno-Betancur, M., Buchanan, D. D., Vineis, P., English, D. R., Hopper, J. L., Severi, G., Southey, M. C., Giles, G. G. & Milne, R. L., 1 Mar 2018, In : American Journal of Epidemiology. 187, 3, p. 529-538 10 p.

Research output: Contribution to journalArticleResearchpeer-review

Dietary intake of one-carbon metabolism nutrients and DNA methylation in peripheral blood

Chamberlain, J. A., Dugué, P. A., Bassett, J. K., Hodge, A. M., Brinkman, M. T., Joo, J. H. E., Jung, C. H., Makalic, E., Schmidt, D. F., Hopper, J. L., Buchanan, D. D., English, D. R., Southey, M. C., Giles, G. G. & Milne, R. L., 1 Sep 2018, In : American Journal of Clinical Nutrition. 108, 3, p. 611-621 11 p.

Research output: Contribution to journalArticleResearchpeer-review

DNA methylation-based biological aging and cancer risk and survival: pooled analysis of seven prospective studies

Dugué, P. A., Bassett, J. K., Joo, J. E., Jung, C. H., Ming Wong, E., Moreno-Betancur, M., Schmidt, D., Makalic, E., Li, S., Severi, G., Hodge, A. M., Buchanan, D. D., English, D. R., Hopper, J. L., Southey, M. C., Giles, G. G. & Milne, R. L., 15 Apr 2018, In : International Journal of Cancer. 142, 8, p. 1611-1619 9 p.

Research output: Contribution to journalArticleResearchpeer-review

Open Access
File