Projects per year
Personal profile
Biography
Professor Christopher Hutchinson’s research covers all aspects of the metallurgy of engineering alloys. This includes work on Steels and Stainless steels, Aluminium alloys, Copper and Brasses, Titanium alloys and Magnesium alloys.
Christopher’s emphasis is on manipulation of the chemistry and processing of engineering alloys to create new alloy structures that exhibit improved combinations of mechanical properties such as strength, elongation, impact, wear and fatigue etc.
Approximately half of his research is conducted in collaboration with Industry (automotive, aerospace, rail, manufacturing, oil and gas) and half funded by fundamental research agencies such as the Australian Research Council (ARC). Professor Hutchinson was a recipient of an ARC Future Fellowship in the inaugural round of 2009, was a Chief Investigator in the ARC Centre of Excellence for Design in Light Metals (2005-2013) and is currently a Chief Investigator in the ARC Industry Transformation Training Centre in Alloy Innovation for Mining Efficiency (2016-2021).
Christopher’s work combines, in roughly equal parts, advanced experimentation and characterisation (including electron microscopy, synchrotron x-ray radiation and neutron diffraction) and theory and computer modelling of the response of alloy structures to changes in materials processing and deformation.
Current projects include the development of new ultra-high strength steels (>2GPa) for the automotive industry, process optimization for 3rd generation advanced high strength steels (AHSS), new ‘dynamically responding’ fatigue resistant Al alloys with properties that improve rather than deteriorate during loading, recrystallization studies of commercial Al alloys, surface modification of engineering alloys, 3D printing of stainless steels for on-demand replacement parts, and process optimisation for thermo-mechanical processing of Brasses.
In addition to his core metallurgy focus, Professor Hutchinson is involved in a large range of Civil Engineering and Architecture projects where he provides metallurgy expertise.
Expertise related to UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):
Research area keywords
- Physical Metallurgy
- Mechanical Metallurgy
- Modelling and Simulation of Materials
- Steel
- Aluminium alloys
- 3D Metal printing
Network
-
The development of lead-free silicon brass for the plumbing industry
Hutchinson, C., Thomas, S. & Moriarty, M.
19/07/22 → 18/07/25
Project: Research
-
Enabling future technology by building light element analysis capability; a light element optimised ultra-high resolution electron microprobe
Tomkins, A., Bhargava, S., Boger, S., Brooks, G., Hutchinson, C., Tardio, J., Weinberg, R., Wen, C., MacRae, C., Pownceby, M. I. & Wilson, N.
Australian Research Council (ARC), Monash University, RMIT University, Swinburne University of Technology, CSIRO - Commonwealth Scientific and Industrial Research Organisation, University of Melbourne
Project: Research
-
An in-operando micromechanical scanning electron microscopy suite
Preuss, M., Etheridge, J., Hutchinson, C., Brugger, J., Liu, A., Cairney, J. M., Griffith, M., Paradowska, A., Birbilis, N., Barnett, M., Kotooussov, A., Ghomashchi, R., Easton, M. A., Qiu, D. & Atrens, A.
1/01/22 → 31/12/22
Project: Research
-
Skin in the game: biomimetics, fitness and the springtail cuticle
1/01/19 → 21/12/22
Project: Research
-
Understanding the complex microstructure of Additively Manufactured Alloys (AMAs) and its relationship to durability
Birbilis, N., Hutchinson, C. & Thomas, S.
16/02/18 → 31/03/22
Project: Research
-
Mesostructure engineering in additive manufacturing of alloys
Wei, S., Hutchinson, C. & Ramamurty, U., Jun 2023, In: Scripta Materialia. 230, 7 p., 115429.Research output: Contribution to journal › Article › Research › peer-review
1 Citation (Scopus) -
On the origin of the barrier in the bainite phase transformation
BENRABAH, I. E., Brechet, Y., Purdy, G., Hutchinson, C. & Zurob, H., 15 Jan 2023, In: Scripta Materialia. 223, 5 p., 115076.Research output: Contribution to journal › Article › Research › peer-review
-
Predicting the chemical homogeneity in laser powder bed fusion (LPBF) of mixed powders after remelting
Li, H., Brodie, E. G. & Hutchinson, C., 5 Mar 2023, In: Additive Manufacturing. 65, 15 p., 103447.Research output: Contribution to journal › Article › Research › peer-review
1 Citation (Scopus) -
Delivering microstructural complexity to additively manufactured metals through controlled mesoscale chemical heterogeneity
Li, H., Thomas, S. & Hutchinson, C., Mar 2022, In: Acta Materialia. 226, 14 p., 117637.Research output: Contribution to journal › Article › Research › peer-review
10 Citations (Scopus) -
In-situ duplex structure formation and high tensile strength of super duplex stainless steel produced by directed laser deposition
Jiang, D., Gao, X., Zhu, Y., Hutchinson, C. & Huang, A., 26 Jan 2022, In: Materials Science and Engineering A. 833, 12 p., 142557.Research output: Contribution to journal › Article › Research › peer-review
11 Citations (Scopus)